Well-posedness of the initial value problem for the Korteweg-de Vries equation

Type: Article

Publication Date: 1991-01-01

Citations: 607

DOI: https://doi.org/10.1090/s0894-0347-1991-1086966-0

Abstract

The conservation law ~k+2 ( .)provides an a priori estimate of the Hknorm (k = 0, 1, ... ) of a solution with data U o E Hk.Hence, combining the local result (s > 3/2), the invariants ~2 -~4' and some inequalities one obtains that the IVP (1.1) is globally well-posed in H S with s ~ 2 .

Locations

  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Well-Posedness of the Initial Value Problem for the Korteweg-de Vries Equation 1991 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vișan
+ Well-posedness of a Class of Non-homogeneous Boundary Value Problems of the Korteweg-de Vries Equation on a Finite Domain 2010 Eugene F. Kramer
Ivonne Rivas
Bing‐Yu Zhang
+ Local and global well-posedness for the Ostrovsky equation 2005 Felipe Linares
Aniura Milanés
+ Global well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation 2008 Zihua Guo
Baoxiang Wang
+ PDF Chat Global well-posedness and inviscid limit for the Korteweg–de Vries–Burgers equation 2009 Zihua Guo
Baoxiang Wang
+ PDF Chat Global well-posedness of Korteweg–de Vries equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2009 Zihua Guo
+ PDF Chat Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain 2013 Eugene F. Kramer
Ivonne Rivas
Bing‐Yu Zhang
+ PDF Chat Well-posedness for the Schrödinger-Korteweg-de Vries system 2007 Adån J. Corcho
Felipe Linares
+ Global Well-posedness and Asymptotic Behavior of a Class of Initial-Boundary-Value Problem of the Korteweg-de Vries Equation on a Finite Domain 2010 Ivonne Rivas
Muhammad Usman
Bing‐Yu Zhang
+ Local well-posedness for the super Korteweg–de Vries equation 2007 Amauri da Silva Barros
+ Global wellposedness of KdV in H−1(T,R) 2006 Thomas Kappeler
Peter Topalov
+ Global Well-posedness of Korteweg-de Vries equation in $H^{-3/4}(\R)$ 2008 Zihua Guo
+ A-priori bounds for KdV equation below $H^{-3/4}$ 2011 Baoping Liu
+ KdV is well-posed in $H^{-1}$ 2019 Rowan Killip
Monica ViƟan
+ PDF Chat Growth of the $H^s$-norm for the modified KdV equation 2000 GermĂĄn Fonseca
+ Global Well-posedness and Asymptotic Behavior of a Class of Initial-boundary-value Problems of the KdV Equation on a Finite Domain 2011 Ivonne Rivas
Muhammad Usman
Bing‐Yu Zhang
+ Well-posedness and Control of the Korteweg-de Vries Equation on a Finite Domain 2015 Caicedo Caceres
Miguel V. Andrés
+ PDF Chat An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval 2001 Thierry Colin
Jean‐Michel Ghidaglia
+ Globalwell-posedness and I method for the fifth order Korteweg-de Vries equation 2011 Wengu Chen
Zihua Guo