The complete generating function for Gessel walks is algebraic

Type: Article

Publication Date: 2010-09-01

Citations: 120

DOI: https://doi.org/10.1090/s0002-9939-2010-10398-2

Abstract

Gessel walks are lattice walks in the quarter-plane $\mathbb N^2$ which start at the origin $(0,0)\in \mathbb N^2$ and consist only of steps chosen from the set $\{\leftarrow , \swarrow , \nearrow , \rightarrow \}$. We prove that if $g(n;i,j)$ denotes the number of Gessel walks of length $n$ which end at the point $(i,j)\in \mathbb N^2$, then the trivariate generating series $\displaystyle {G(t;x,y)=\sum _{n,i,j\geq 0} g(n;i,j)x^i y^j t^n}$ is an algebraic function.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Explicit expression for the generating function counting Gessel's walks 2009 Irina Kurkova
Kilian Raschel
+ Explicit expression for the generating function counting Gesselʼs walks 2010 Irina Kurkova
Kilian Raschel
+ Explicit expression of the counting generating function for Gessel's walk 2009 Irina Kurkova
Kilian Raschel
+ A human proof of Gessel’s lattice path conjecture 2015 Alin Bostan
Irina Kurkova
Kilian Raschel
+ An elementary solution of Gessel's walks in the quadrant 2016 Mireille Bousquet‐Mélou
+ An elementary solution of Gessel's walks in the quadrant 2015 Mireille Bousquet‐Mélou
+ An elementary solution of Gessel's walks in the quadrant 2015 Mireille Bousquet‐Mélou
+ Hypergeometric Expressions for Generating Functions of Walks with Small Steps in the Quarter Plane 2016 Alin Bostan
Frédéric Chyzak
Mark van Hoeij
Manuel Kauers
Lucien Pech
+ A probabilistic approach to enumeration of Gessel walks 2009 Ping Sun
+ Hypergeometric Expressions for Generating Functions of Walks with Small Steps in the Quarter Plane 2016 Alin Bostan
Frédéric Chyzak
Mark van Hoeij
Manuel Kauers
Lucien Pech
+ Hypergeometric expressions for generating functions of walks with small steps in the quarter plane 2016 Alin Bostan
Frédéric Chyzak
Mark van Hoeij
Manuel Kauers
Lucien Pech
+ PDF Chat Length derivative of the generating series of walks confined in the quarter plane 2022 Thomas Dreyfus
Charlotte Hardouin
+ PDF Chat Differential algebraic generating series of weighted walks in the quarter plane 2022 Thomas Dreyfus
+ PDF Chat The Sage package comb_walks for walks in the quarter plane 2020 Alin Bostan
Frédéric Chyzak
Antonio Jiménez-Pastor
Pierre Lairez
+ PDF Chat New Steps in Walks with Small Steps in the Quarter Plane: Series Expressions for the Generating Functions 2015 Irina Kurkova
Kilian Raschel
+ PDF Chat Transcendence of Generating Functions of Walks on the Slit Plane 2004 Martin Rubey
+ A Note on the Gessel Numbers 2022 Jovan Mikić
+ PDF Chat Counting Walks in the Quarter Plane 2002 Mireille Bousquet‐Mélou
+ Transcendence of generating functions of walks on the slit plane 2004 Martin Rubey
+ PDF Chat Length derivative of the generating function of walks confined in the quarter plane 2022 Thomas Dreyfus
Charlotte Hardouin