Local smoothing with given marginals

Type: Article

Publication Date: 2011-06-30

Citations: 3

DOI: https://doi.org/10.1080/00949655.2011.561436

Abstract

In models using categorical data, one may use adjacency relations to justify smoothing to improve upon simple histogram approximations of the probabilities. This is particularly convenient for sparsely observed or rather peaked distributions. Moreover, in a few models, prior knowledge of a marginal distribution is available. We adapt local polynomial estimators to include this partial information about the underlying distribution and give explicit representations for the proposed estimators. An application to a set of anthropological data is included.

Locations

  • Journal of Statistical Computation and Simulation - View
  • Estudo Geral (Universidad de Coimbra) - View - PDF

Similar Works

Action Title Year Authors
+ Penalized smoothing of sparse tables 2007 Pierre Jacob
Paulo Eduardo Oliveira
+ Smoothing sparse multinomial data using local polynomial fitting 1997 Marc Aerts
Ilse Augustyns
Paul Janssen
+ Local Polynomial Smoothing 2005 Burkhardt Seifert
ThĂŠo Gasser
+ Local Polynomial Estimation of Contingency Table Cell Probabilities 1997 Marc Aerts
Ilse Augustyns
Paul Janssen
+ Comment: Marginal Models and Graphs for Categorical Data 2013 Antonio Forcina
+ Marginal Models: an Overview 2023 TamĂĄs Rudas
Wicher Bergsma
+ PDF Chat Marginal Models: An Overview 2023 TamĂĄs Rudas
Wicher Bergsma
+ Relative smoothing of discrete distributions with sparse observations 2009 Pierre Jacob
Paulo Eduardo Oliveira
+ PDF Chat Local likelihood density estimation 1996 Clive Loader
+ Bootstrapping local polynomial estimators in likelihood-based models 2000 Gerda Claeskens
Marc Aerts
+ PDF Chat Marginal modelling of multivariate categorical data 1999 Geert Molenberghs
Emmanuel Lesaffre
+ Local Polynomial Fitting 2000 Jianqing Fan
Irène Gijbels
+ Smoothing of Multivariate Data 2009 Jussi Klemelä
+ Statistical Inference for Local-Polynomial Regression 2000 John Fox
+ Local polynomial estimation of a conditional mean function with dependent truncated data 2011 Han‐Ying Liang
Jacobo de Uña‐Álvarez
MarĂ­a del Carmen Iglesias PĂŠrez
+ Spline Regression in the Presence of Categorical Predictors 2012 Shujie Ma
Jeffrey S. Racine
Lijian Yang
+ Marginal Regression Models with Varying Coefficients for Correlated Ordinal Data 1999 Christian Gieger
+ Local polynomial smoothing based on the Kaplan–Meier estimate 2022 Dimitrios Bagkavos
D. Ioannides
+ Smoothing by Local Regression: Principles and Methods 1996 William S. Cleveland
Catherine Loader
+ Local Polynomial Estimation of Distribution Functions 2007 李永红
曾霞