A modified log-Harnack inequality and asymptotically strong Feller property

Type: Article

Publication Date: 2011-07-15

Citations: 22

DOI: https://doi.org/10.1007/s00028-011-0117-z

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal of Evolution Equations - View

Similar Works

Action Title Year Authors
+ PDF Chat An extension of Feller’s strong law of large numbers 2017 Deli Li
Han‐Ying Liang
Andrew Rosalsky
+ PDF Chat Logarithmic Harnack Inequalities 1996 Fan Chung
Shing‐Tung Yau
+ A remark on the Kolmogorov–Feller weak law of large numbers 2022 Fakhreddine Boukhari
+ A Note on the Erdös-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ A Note on the Erdos-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ A note on the Log-Lindley distribution 2016 P. JodrĂĄ
M.D. JimĂ©nez–Gamero
+ A new inequality of Menshov-Rademacher type and the strong law of large numbers 1995 Barthélemy Le Gac
Ferenc MĂłricz
K. Tandori
+ A Short Proof of the Erdos-Mordell Theorem 1997 Vilmos Komornik
+ A Short Proof of the ErdƑs-Mordell Theorem 1997 Vilmos Komornik
+ A refinement of Erdös-Mordell's inequality 2002 Mihåly Bencze
Marian Dincă
+ Dimension-Free Harnack Inequality and its Applications 2006 Feng‐Yu Wang
+ A discrete version of the Mishou theorem 2014 Eugenijus Buivydas
Antanas Laurinčikas
+ A new refinement of the Garfunkel–Bankoff inequality 2023 Quang Hung Tran
+ On Lindeberg–Feller Limit Theorem 2019 Ė. L. Presman
Sh. K. Formanov
+ The Erdös-Mordell Inequality 2008
+ The Erdös-Mordell Inequality 2008
+ Sharpened versions of a Kolmogorov’s inequality 2009 Sergei Antonov
V. M. Kruglov
+ A discrete variant of Farkas’ Lemma 2017 David Bartl
Dipti Dubey
+ A conditional version of the extended Kolmogorov–Feller weak law of large numbers 2014 Demei Yuan
Xuemei Hu
+ A Measure Theoretic Erdos-Rado Theorem 1995 Zara I. Abud
Francisco Miraglia