Regularization parameters for the self-force in Schwarzschild spacetime: Scalar case

Type: Article

Publication Date: 2002-10-29

Citations: 63

DOI: https://doi.org/10.1103/physrevd.66.084022

Abstract

We derive the explicit values of all regularization parameters (RP) for a scalar particle in an arbitrary geodesic orbit around a Schwarzschild black hole. These RP are required within the previously introduced mode-sum method, for calculating the local self-force acting on the particle. In this method one first calculates the (finite) contribution to the self-force due to each individual multipole mode of the particle's field, and then applies a certain regularization procedure to the mode sum, involving the RP. The explicit values of the RP were presented in a recent Letter [Phys. Rev. Lett. {\bf 88}, 091101 (2002)]. Here we give full details of the RP derivation in the scalar case. The calculation of the RP in the electromagnetic and gravitational cases will be discussed in an accompanying paper.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D. Particles and fields - View
  • arXiv (Cornell University) - View - PDF
  • MPG.PuRe (Max Planck Society) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Regularization parameters for the self-force in Schwarzschild spacetime. II. Gravitational and electromagnetic cases 2003 Leor Barack
Amos Ori
+ PDF Chat Calculating the Gravitational Self-Force in Schwarzschild Spacetime 2002 Leor Barack
Yasushi Mino
Hiroyuki Nakano
Amos Ori
Misao Sasaki
+ Calculating the self force in Schwarzschild spacetime by mode-sum regularization 1999 Leor Barack
Amos Ori
+ PDF Chat A New Analytical Method for Self-Force Regularization. I: -- Charged Scalar Particles in Schwarzschild Spacetime -- 2004 Wataru Hikida
Sanjay Jhingan
Hiroyuki Nakano
Norichika Sago
M. Sasaki
T. Tanaka
+ PDF Chat Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field 2006 Roland Haas
Eric Poisson
+ PDF Chat Mode sum regularization approach for the self-force in black hole spacetime 2000 Leor Barack
Amos Ori
+ PDF Chat Gravitational Self-Force on a Particle Orbiting a Kerr Black Hole 2003 Leor Barack
Amos Ori
+ PDF Chat Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories 2000 Leor Barack
+ PDF Chat MODE SUM REGULARIZATION APPROACH FOR THE SELF-FORCE IN BLACK HOLE SPACETIME 2002 Leor Barack
+ PDF Chat Covariant Self-Force Regularization of a Particle Orbiting a Schwarzschild Black Hole: Mode Decomposition Regularization 2002 Yoshiki Mino
Hiroyuki Nakano
Misao Sasaki
+ PDF Chat High-order expansions of the Detweiler-Whiting singular field in Schwarzschild spacetime 2012 Anna Heffernan
Adrian C. Ottewill
Barry Wardell
+ Regularization parameters for the self-force of a scalar particle in a general orbit about a Schwarzschild black hole 2004 Dong-Hoon Kim
+ Regularization parameters for the self-force of a scalar particle in a general orbit about a Schwarzschild black hole 2010 Dong-Hoon Kim
+ PDF Chat Gravitational self-force by mode sum regularization 2001 Leor Barack
+ PDF Chat Self-Force on a Particle in Orbit around a Black Hole 2000 Lior M. Burko
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>m</mml:mi></mml:math>-mode regularization scheme for the self-force in Kerr spacetime 2007 Leor Barack
Darren A. Golbourn
Norichika Sago
+ PDF Chat Self-force on static charges in Schwarzschild spacetime 1999 Lior M. Burko
+ PDF Chat Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation 2007 Roland Haas
+ Scalar self-force on eccentric geodesics in Schwarzschild spacetime: a time-domain computation 2007 Roland Haas
+ PDF Chat High-order expansions of the Detweiler-Whiting singular field in Kerr spacetime 2014 Anna Heffernan
Adrian C. Ottewill
Barry Wardell