Type: Article
Publication Date: 2003-01-01
Citations: 4
DOI: https://doi.org/10.4064/sm154-1-6
Let $K$ be a Calderón–Zygmund kernel and $P$ a real polynomial defined on ${\mathbb R}^n$ with $P(0)=0$. We prove that convolution with $K \mathop {\rm exp}\nolimits (i/P) $ is continuous on $L^2 ({\mathbb R}^n)$ with bounds depending only on $K$, $