Frobenius monads and pseudomonoids

Type: Article

Publication Date: 2004-10-01

Citations: 100

DOI: https://doi.org/10.1063/1.1788852

Abstract

Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only if it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What it means for a morphism of a bicategory to be a projective equivalence is defined; this concept is related to “strongly separable” Frobenius algebras and “weak monoidal Morita equivalence.” Wreath products of Frobenius algebras are discussed.

Locations

  • Journal of Mathematical Physics - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ A note on Frobenius monoidal functors on autonomous categories 2014 Adriana Balan
+ Frobenius Algebras in Functor Categories 2014 Martti Karvonen
+ PDF Chat Codescent and bicolimits of pseudo-algebras 2023 Axel Osmond
+ PDF Chat Weak bimonads and weak Hopf monads 2010 Gabriella Böhm
Stephen Lack
Ross Street
+ Formal Hopf algebra theory I: Hopf modules for pseudomonoids 2008 Ignacio López Franco
+ PDF Chat Eilenberg-Moore Bicategories for Opmonoidal Pseudomonads 2024 Adrian Miranda
+ Hopf modules for autonomous pseudomonoids and the monoidal centre 2007 Ignacio López Franco
+ Weak Frobenius monads and Frobenius bimodules 2014 Robert Wisbauer
+ Weak Frobenius monads and Frobenius bimodules 2014 Wisbauer Robert
+ PDF Chat Antipodes, preantipodes and Frobenius functors 2020 Paolo Saracco
+ Weak bimonads 2010 Gabriella Böhm
Stephen Lack
Ross Street
+ Weak Frobenius bimonads and Frobenius bimodules 2014 Robert Wisbauer
+ PDF Chat Hopf comonads on naturally Frobenius map-monoidales 2015 Gabriella Böhm
Stephen Lack
+ Note on Frobenius monoidal functors 2008 Brian Day
Craig Pastro
+ Codescent and bicolimits of pseudo-algebras 2022 Axel Osmond
+ On Frobenius and separable algebra extensions in monoidal categories. Applications to wreaths 2013 Daniel Bulacu
B. Torrecillas
+ On Frobenius and separable algebra extensions in monoidal categories. Applications to wreaths 2013 Daniel Bulacu
Blas Torrecillas
+ PDF Chat Frobenius algebra objects in Temperley-Lieb categories at roots of unity 2024 J. A. Grant
Mathew Pugh
+ Monoidal Morita equivalence 2004 Kornél Szlachányi
+ On Frobenius algebras in rigid monoidal categories 2009 Jürgen Fuchs
Carl Stigner