A study of the local components of the Hecke algebra mod ๐‘™

Type: Article

Publication Date: 1982-01-01

Citations: 56

DOI: https://doi.org/10.1090/s0002-9947-1982-0642340-0

Abstract

We use information about modular forms <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mod l"> <mml:semantics> <mml:mrow> <mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo> <mml:mi>l</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\bmod l</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to study the local structure of the Hecke ring. In particular, we find nontrivial lower bounds for the dimensions of the Zariski tangent spaces of the local components of the Hecke ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mod l"> <mml:semantics> <mml:mrow> <mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo> <mml:mi>l</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\bmod l</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These results suggest that the local components of the Hecke ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mod l"> <mml:semantics> <mml:mrow> <mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo> <mml:mi>l</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\bmod l</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are more complex than originally expected. We also investigate the inverse limits of the Hecke rings of weight <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k mod l"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo> <mml:mi>l</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">k\bmod l</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> varies within a fixed congruence class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mod l minus 1"> <mml:semantics> <mml:mrow> <mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo> <mml:mi>l</mml:mi> <mml:mo>โˆ’<!-- โˆ’ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\bmod l - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As an immediate corollary to some of the above results, we show that when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is sufficiently large, an arbitrary prime <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="l"> <mml:semantics> <mml:mi>l</mml:mi> <mml:annotation encoding="application/x-tex">l</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must divide the index of the classical Hecke ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T Subscript k"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {T}}_k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the ring of integers of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T Subscript k Baseline circled-times bold upper Q"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo>โŠ—<!-- โŠ— --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {T}}_k} \otimes {\mathbf {Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A Study of the Local Components of the Hecke Algebra mod l 1982 Naomi Jochnowitz
+ PDF Chat Structure of a Hecke algebra quotient 1997 C. Fan
+ PDF Chat Newforms mod ๐‘ in squarefree level with applications to Monskyโ€™s Hecke-stable filtration 2019 Shaunak V. Deo
Anna Medvedovsky
+ PDF Chat The decomposition numbers of the Hecke algebra of type ๐ธ*โ‚† 1993 Meinolf Geck
+ PDF Chat Hecke algebras, ๐‘ˆ_{๐‘ž}๐‘ ๐‘™_{๐‘›}, and the Donald-Flanigan conjecture for ๐‘†_{๐‘›} 1997 Murray Gerstenhaber
Mary Schaps
+ PDF Chat Jordan decompositions of cocenters of reductive ๐‘-adic groups 2019 Xuhua He
Ju-Lee Kim
+ PDF Chat The local Hurwitz constant and Diophantine approximation on Hecke groups 1990 Joseph Lehner
+ PDF Chat Cocenters and representations of pro-๐‘ Hecke algebras 2017 Xuhua He
Sian Nie
+ Hecke modules and supersingular representations of U(2,1) 2015 Karol Kozioล‚
Peng Xu
+ PDF Chat Algebra for Heckoid groups 1992 Robert W. Riley
+ Types in reductive ๐‘-adic groups: The Hecke algebra of a cover 2000 Colin J. Bushnell
Philip Kutzko
+ Heckeโ€™s Theory of Modular Forms 2005
+ PDF Chat Determination of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi mathvariant="italic">GL</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> Heckeโ€“Maass forms from twisted central values 2014 Ritabrata Munshi
Jyoti Sengupta
+ PDF Chat Notes on endomorphisms, local cohomology and completion 2021 Peter Schenzel
+ Finiteness for Hecke algebras of ๐‘-adic groups 2023 Jean-Franรงois Dat
David Helm
Robert Kurinczuk
Gilbert Moss
+ PDF Chat Hecke operators and the fundamental domain for ๐‘†๐ฟ(3,๐‘) 1987 Daniel M. Gordon
Douglas Grenier
Audrey Terras
+ Hecke algebras for the basic characters of the unitriangular group 2003 Carlos A. M. Andrรฉ
+ On the computation of algebraic modular forms on compact inner forms of ๐†๐’๐ฉโ‚„ 2014 Lassina Dembรฉlรฉ
+ PDF Chat Centers of generic Hecke algebras 1990 Lenny Jones
+ PDF Chat A simplified trace formula for Hecke operators for ฮ“โ‚€(๐‘) 1992 Shepley L. Ross