Representation of volume-preserving maps induced by solenoidal vector fields

Type: Article

Publication Date: 1985-03-01

Citations: 27

DOI: https://doi.org/10.1063/1.865093

Abstract

A general representation of finite-volume-preserving maps induced by solenoidal vector fields in periodic cylinders is derived. An important special case is the area preserving Hamiltonian maps which include the standard mapping. Applications to computational problems in plasma physics are briefly indicated.

Locations

  • The Physics of Fluids - View - PDF

Similar Works

Action Title Year Authors
+ Introduction to the dynamics of area–preserving maps 1987 R. S. MacKay
+ Gap-length mapping for periodic Jacobi matrices 2006 Evgeny Korotyaev
+ PDF Chat Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics 2021 Luis C. García-Naranjo
Mats Vermeeren
+ PDF Chat The destruction of tori in volume-preserving maps 2011 James D. Meiss
+ PDF Chat Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems 2018 Anass Serhani
Denis Matignon
Ghislain Haine
+ Invariant Objects in Volume Preserving Maps and Flows 2014 Rafael de la Llave
+ Generating Functions for Volume-preserving Mappings and Hamilton-Jacobi Equations for Source-free Dynamical Systems 1994 Shang Zai
+ PDF Chat Area-preserving maps models of gyroaveraged E×B chaotic transport 2014 J. D. da Fonseca
D. del-Castillo-Negrete
Iberê L. Caldas
+ Resonant normal forms, interpolating Hamiltonians and stability analysis of area preserving maps 1993 Armando Bazzani
M. Giovannozzi
G. Servizi
E. Todesco
G. Turchetti
+ Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics 2020 Luis C. García-Naranjo
Mats Vermeeren
+ Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics 2020 Luis C. García-Naranjo
Mats Vermeeren
+ Balancing based structure preserving order reduction for port-Hamiltonian systems 2010 Jacquelien M.A. Scherpen
Arjan van der Schaft
+ Gradient-Like Diffeomorphisms and Periodic Vector Fields 2023 В. З. Гринес
L. M. Lerman
+ Using invariant manifolds to construct symbolic dynamics for three-dimensional volume-preserving maps 2016 Bryan Maelfeyt
Spencer Smith
Kevin Mitchell
+ Using invariant manifolds to construct symbolic dynamics for three-dimensional volume-preserving maps 2016 Bryan Maelfeyt
Spencer Smith
Kevin Mitchell
+ Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics 2016 Ruili Zhang
Jian Liu
Hong Qin
Yifa Tang
He Yang
Yulei Wang
+ Volume-preserving algorithms for charged particle dynamics 2014 He Yang
Yajuan Sun
Jian Liu
Hong Qin
+ Maps Preserving Moment Sequences 2015 Javier Cárcamo
+ PDF Chat Using Invariant Manifolds to Construct Symbolic Dynamics for Three-Dimensional Volume-Preserving Maps 2017 Bryan Maelfeyt
Spencer Smith
Kevin Mitchell
+ Rotation number of integrable symplectic mappings of the plane 2017 Timofey Zolkin
Sergei Nagaitsev
Viatcheslav Danilov

Works Cited by This (1)

Action Title Year Authors
+ <i>Difference Methods for Initial-Value Problems</i> 1959 Robert D. Richtmyer
E. H. Dill