Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems

Type: Article

Publication Date: 1982-04-01

Citations: 208

DOI: https://doi.org/10.1063/1.525415

Abstract

We start with an unperturbed system containing a homoclinic orbit and at least two families of periodic orbits associated with action angle coordinates. We use Kolmogorov–Arnold–Moser (KAM) theory to show that some of the resulting tori persist under small perturbations and use a vector of Melnikov integrals to show that, under suitable hypotheses, their stable and unstable manifolds intersect transversely. This transverse intersection is ultimately responsible for Arnold diffusion on each energy surface. The method is applied to a pendulum–oscillator system.

Locations

  • Journal of Mathematical Physics - View
  • CaltechAUTHORS (California Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems a) 2020 Philip J. Holmes
Jerrold E. Marsden
+ Melkinov's Method and Arnold Diffusion for Perturbations of Integrable Hamiltonian Systems. 1981 Philip Holmes
Jerrold E. Marsden
+ Mel’nikov Methods and Homoclinic Orbits in Discontinuous Systems 2013 Alessandro Calamai
Matteo Franca
+ Notes on the computation of periodic orbits using Newton and Melnikov's method 2016 Albert Granados
+ PDF Chat KAM theory: The legacy of Kolmogorov's 1954 paper 2004 Henk Broer
+ Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom 2020 V. A. Kaloshin
Ke Zhang
+ Melnikov–s Method for Homoclinic Orbits in Two-Dimensional, Time-Periodic Vector Fields 2006
+ PDF Chat Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations 2018 Marian Gidea
Rafael de la Llave
+ Homoclinic Orbits, Melnikov’s Method, and Chaos 2006
+ Homoclinic Orbits, Melnikov’s Method, and Chaos 2008
+ Introduction to Arnold's Proof of the Kolmogorov–Arnold–Moser Theorem 2022 Achim Feldmeier
+ The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems 1999 Kazuyuki Yagasaki
+ PDF Chat Kolmogorov–Arnold–Moser theorem 2019 Stephan Ramon Garcia
Stephen R. Miller
+ Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems 1998 C. Chandré
M. Govin
H. R. Jauslin
+ PDF Chat Arnold’s potentials and quantum catastrophes II 2022 Miloslav Znojil
D. I. Borisov
+ PDF Chat KAM tori and whiskered invariant tori for non-autonomous systems 2015 Marta Canadell
Rafael de la Llave
+ TRANSVERSE HOMOCLINIC ORBIT BIFURCATED FROM A HOMOCLINIC MANIFOLD BY THE HIGHER ORDER MELNIKOV INTEGRALS 2020 Bin Long
Changrong Zhu
+ KAM Theory: Quasi-periodicity in Dynamical Systems 2010 Henk Broer
Mikhail B. Sevryuk
+ Arnold diffusion in a model of dissipative system 2022 Samuel W. Akingbade
Marian Gidea
Tere M. Seara
+ PDF Chat Arnold’s potentials and quantum catastrophes 2019 Miloslav Znojil