Finite difference quantum Toda lattice via equivariant K-theory

Type: Article

Publication Date: 2005-12-01

Citations: 36

DOI: https://doi.org/10.1007/s00031-005-0402-4

Locations

  • Transformation Groups - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The equivariant Toda lattice 2004 Ezra Getzler
+ The quantum mechanical toda lattice 1980
+ PDF Chat A Fourier transform for the quantum Toda lattice 2018 Gus Lonergan
+ On the Integrability of Deformation Quantized Toda Lattice 2006 Naoya Miyazaki
+ Kac-Moody construction of Toda type field theories 1991 H. Aratyn
L. A. Ferreira
J. F. Gomes
A. H. Zímerman
+ The lattice Toda field theory for simple Lie algebras 2002 Rei Inoue
+ Noether and master symmetries for the Toda lattice 2005 Pantelis A. Damianou
C. Sophocleous
+ The Toda Lattice as a Forced Integrable System 1986 P. J. Hansen
D. J. Kaup
+ Heisenberg operators of a generalized Toda lattice 1982 I.A. Fedoseev
A. N. Leznov
M. V. Saveliev
+ PDF Chat The Goryachev-Chaplygin top and the Toda lattice 1987 C. Bechlivanidis
Pierre van Moerbeke
+ PDF Chat The Toda lattice is super-integrable 2006 Maria A. Agrotis
Pantelis A. Damianou
C. Sophocleous
+ A remark about the forced Toda lattice 1986 Yu. M. Berezanskiĭ
+ On Computation of Darboux Polynomials for Full Toda Lattice 2025 A. V. Tsiganov
+ An operator theoretic approach to the Toda lattice equation 1998 Cornelia Schiebold
+ A systematic study of the Toda lattice 1989 Ashok Das
Susumu Ôkubo
+ A systematic study of the Toda lattice 1989
+ Quantum Schubert vs affine Schubert via nilpotent Toda lattice (組合せ論的表現論とその応用--RIMS研究集会報告集) 2011 岳 池田
+ Quantum Schubert vs affine Schubert via nilpotent Toda lattice (Combinatorial Representation Theory and its Applications) 2011 岳 池田
+ The translationally non-invariant quantization of a generalized toda lattice 1984 I.A. Fedoseev
A. N. Leznov
+ A supersymmetric extension of the Toda lattice hierarchy 1987 Kaoru Ikeda