The Integrability of the Square Exponential Transportation Cost

Type: Article

Publication Date: 1993-11-01

Citations: 26

DOI: https://doi.org/10.1214/aoap/1177005274

Abstract

Let $X_1,\ldots,X_n,Y_1,\ldots,Y_n$ be i.i.d. with the uniform distribution on $(\lbrack 0,1\rbrack^2, \| \|)$, where $\| \|$ denotes the Euclidean norm. Using a new presentation of the Ajtai-Komlos-Tusnady (AKT) transportation algorithm, it is shown that the square exponential transportation cost $\inf_\pi \sum^n_{i=1} \exp\Bigg(\frac{\|X_i - Y_{\pi(i)}\|}{K(\log n/n)^{1/2}}\Bigg)^2,$ where $\pi$ ranges over all permutations of the integers $1,\ldots,n$, satisfies an integrability condition. This condition strengthens the optimal matching results of AKT and supports a recent conjecture of Talagrand. Rates of growth for the $L_p$ transportation cost are also found.

Locations

  • The Annals of Applied Probability - View - PDF

Similar Works

Action Title Year Authors
+ Towards Optimal Running Times for Optimal Transport 2018 José Blanchet
Arun Jambulapati
Carson Kent
Aaron Sidford
+ An Improved Lower Bound for the Traveling Salesman Constant 2019 Julia Gaudio
Patrick Jaillet
+ An Improved Lower Bound for the Traveling Salesman Constant 2019 Julia Gaudio
Patrick Jaillet
+ PDF Chat The Asymmetric Traveling Salesman Path LP Has Constant Integrality Ratio 2019 Anna Köhne
Vera Traub
Jens Vygen
+ PDF Chat The Transportation Cost from the Uniform Measure to the Empirical Measure in Dimension $\geq 3$ 1994 Michel Talagrand
+ On Multimarginal Partial Optimal Transport: Equivalent Forms and Computational Complexity 2021 Khang Le
Huy Hoang Nguyen
Tung Pham
Nhat Ho
+ Pairwise Multi-marginal Optimal Transport via Universal Poisson Coupling 2019 Cheuk Ting Li
V. Anantharam
+ PDF Chat Beating the Integrality Ratio for $s$-$t$-Tours in Graphs 2020 Vera Traub
Jens Vygen
+ PDF Chat A Factor Matching of Optimal Tail Between Poisson Processes 2023 Ádám Timár
+ Separating subadditive Euclidean functionals 2015 Alan Frieze
Wesley Pegden
+ Separating subadditive Euclidean functionals 2015 Alan Frieze
Wesley Pegden
+ Asymptotics for transportation cost in high dimensions 1995 Vladimir Dobrić
J. E. Yukich
+ An asymptotic determination of the minimum spanning tree and minimum matching constants in geometrical probability 1989 Dimitris Bertsimas
Garrett J. van Ryzin
+ Quadratic Transportation Cost and Talagrand's Inequality 2009 Devdatt Dubhashi
Alessandro Panconesi
+ PDF Chat Towards optimal running times for optimal transport 2023 José Blanchet
Arun Jambulapati
Carson Kent
Aaron Sidford
+ PDF Chat A new characterization of quadratic transportation-information inequalities 2016 Yuan Liu
+ PDF Chat $${\mathcal {W}}_\infty $$-transport with discrete target as a combinatorial matching problem 2021 Mohit Bansil
Jun Kitagawa
+ PDF Chat A Lower Bound for the Expected Travel Among $m$ Random Points 1948 Eli S. Marks
+ PDF Chat On Integrality Ratios for Asymmetric TSP in the Sherali-Adams Hierarchy 2013 Joseph Cheriyan
Zhihan Gao
Konstantinos Georgiou
Sahil Singla
+ On the concave one-dimensional random assignment problem and Young integration theory 2023 Michaël Goldman
Dario Trevisan