A Note on the Iwasawa .LAMBDA.-Invariants of Real Abelian Number Fields.

Type: Article

Publication Date: 1998-01-01

Citations: 2

DOI: https://doi.org/10.4036/iis.1998.109

Abstract

Let k be a real abelian number field with Galois group Δ and p an odd prime number. Assume that the order of Δ is not divisible by p. Let Ψ be an irreducible Qp-character of Δ. Denote by λp(Ψ ) the Ψ-component of the λ-invariant associated to the cyclotomic Zp-extension of k. Then Greenberg conjecture for the Ψ-components states that λp(Ψ ) is always zero for any Ψ and p. Although some efficient criteria for the conjecture to be true are given, very little is known about it except for k =Q or the trivial character case. There is another λ-invariant. Denote by λp*(Ψ ) the λ-invariant associated to the p -adic L-function related to Ψ. One can know λp*(Ψ ) by computing the Iwasawa power series attached to Ψ. The Iwasawa main conjecture proved by Mazur and Wiles says that the inequality λp(Ψ ) ≤ λp*(Ψ ) holds. In this paper, we give a necessary and sufficient condition for this inequality to be strict in terms of special values of p -adic L-functions. This result enables us to obtain a criterion for Greenberg’s conjecture for Ψ-components to be true when the corresponding Iwasawa power series is irreducible.

Locations

  • Interdisciplinary Information Sciences - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the Iwasawa invariants of certain real abelian fields 1997 Humio Ichimura
Hiroki Sumida-Takahashi
+ On the Iwasawa $了$-invariant of the Real $p$-cyclotomic Field 1996 Humio Ichimura
Hiroki Sumida-Takahashi
+ PDF Chat On the Iwasawa $\lambda$-Invariants of Real Quadratic Fields 1993 Hisao Taya
+ PDF Chat On $p$-adic zeta functions and ${\bf Z}_p$-extensions of certain totally real number fields 1999 Hisao Taya
+ PDF Chat A criterion for Greenberg's conjecture 2008 Luca Caputo
Filippo Alberto Edoardo Nuccio Mortarino Majno Di Capriglio
+ On the Iwasawa lambda invariant of an imaginary abelian field of conductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>3</mml:mn><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math> 2012 Humio Ichimura
Satoru Nakajima
Hiroki Sumida-Takahashi
+ PDF Chat Ichimura-Sumida criterion for Iwasawa $\lambda $-invariants 2000 Takashi Fukuda
Keiichi Komatsu
+ PDF Chat On the vanishing of Iwasawa invariants of certain $\left( {p,p} \right)$-extensions of $\mathbf{Q}$ 1997 Gen Yamamoto
+ Iwasawa’s Construction of p-adic L-functions 1997 Lawrence C. Washington
+ PDF Chat On the Iwasawa λ-invariants of quaternion extensions 1999 Keiichi Komatsu
+ The Iwasawa $\lambda$-invariants of Real Abelian Fields and the Cyclotomic Elements 1999 Masato Kurihara
+ PDF Chat A note on Greenberg’s conjecture and the abc conjecture 1998 Humio Ichimura
+ PDF Chat On Small Iwasawa Invariants and Imaginary Quadratic Fields 1991 Jonathan W. Sands
+ PDF Chat The Iwasawa $\mu$-invariant of certain elliptic curves of analytic rank zero 2024 Adithya Chakravarthy
+ ON THE IWASAWA INVARIANTS OF CERTAIN REAL ABELIAN FIELDS II 1996 Humio Ichimura
Hiroki Sumida-Takahashi
+ The split prime μ-conjecture and further topics in Iwasawa theory 2019 Vlad-Cristian Crisan
+ PDF Chat The Iwasawa invariant<i>μ</i>for quadratic fields 1979 Frank Gerth
+ Iwasawa’s Construction of p-adic L-functions 1982 Lawrence C. Washington
+ Iwasawa Invariants for elliptic curves over $\mathbb{Z}_{p}$-extensions and Kida's Formula. 2021 Debanjana Kundu
Anwesh Ray
+ The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>S</mml:mi><mml:mo>,</mml:mo><mml:mo stretchy="false">{</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">}</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math>-Iwasawa theory 2015 Su Hu
Min-Soo Kim

Works Cited by This (0)

Action Title Year Authors