Eigenfunction Concentration for Polygonal Billiards

Type: Article

Publication Date: 2009-05-04

Citations: 26

DOI: https://doi.org/10.1080/03605300902768909

Abstract

In this note, we extend the results on eigenfunction concentration in billiards as proved by the third author in [8 Marzuola , J. ( 2007 ). Eigenfunctions for partially rectangular billiards . Communications in Partial Differential Equations 31 : 775 – 790 .[Taylor & Francis Online] , [Google Scholar]]. There, the methods developed in Burq and Zworski [3 Burq , N. , Zworski , M. ( 2005 ). Bouncing ball modes and quantum chaos . SIAM Review 47 : 43 – 49 .[Crossref], [Web of Science ®] , [Google Scholar]] to study eigenfunctions for billiards which have rectangular components were applied. Here we take an arbitrary polygonal billiard B and show that eigenfunction mass cannot concentrate away from the vertices; in other words, given any neighborhood U of the vertices, there is a lower bound for some c = c(U) > 0 and any eigenfunction u.

Locations

  • Communications in Partial Differential Equations - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Eigenfunction concentration for pseudointegrable billiards 2008 Andrew Hassell
Jeremy L. Marzuola
+ Nonconcentration of eigenfunctions for partially rectangular billiards 2004 Jeremy L. Marzuola
+ PDF Chat Nonconcentration in partially rectangular billiards 2012 Luc Hillairet
Jeremy L. Marzuola
+ Nonconcentration in partially rectangular billiards 2010 Luc Hillairet
Jeremy L. Marzuola
+ PDF Chat Nonconcentration in partially rectangular billiards 2012 Luc Hillairet
Jeremy L. Marzuola
+ Nonconcentration in partially rectangular billiards 2010 Luc Hillairet
Jeremy L. Marzuola
+ PDF Chat Nonconcentration in partially rectangular billiards 2012 Luc Hillairet
Jeremy L. Marzuola
+ PDF Chat Can billiard eigenstates be approximated by superpositions of plane waves? 2003 Boris Gutkin
+ Billiard flow and eigenfunction concentration on polyhedrons 2019 Mihajlo Cekić
Bogdan Georgiev
Mayukh Mukherjee
+ Eigenfunctions for partially rectangular billiards 2003 Nicolas Burq
Maciej Zworski
+ Some challenges in the theory of (semi)-dispersing billiards 2008 Domokos Szász
+ Billiards in Bounded Convex Domains 2006 Serge Tabachnikov
+ PDF Chat A Non-Concentration Estimate for Partially Rectangular Billiards 2014 Hans Christianson
+ Convex billiards 1990 PeterM. Gruber
+ PDF Chat Lower estimates for the number of closed trajectories of generalized billiards 2006 Fedor Duzhin
+ A non-concentration estimate for partially rectangular billiards 2013 Hans Christianson
+ PDF Chat Hyperbolic billiards and statistical physics 2007 N. Chernov
Dmitry Dolgopyat
+ A non-concentration estimate for partially rectangular billiards 2013 Hans Christianson
+ Instability and entropy for a class of dispersing billiards 1998 Latchezar Nedeltchev Stoyanov
+ PDF Chat Polyhedral Billiards, Eigenfunction Concentration and Almost Periodic Control 2020 Mihajlo Cekić
Bogdan Georgiev
Mayukh Mukherjee