Weak convergence of wave maps from (1+2)-dimensional Minkowski space to Riemannian manifolds

Type: Article

Publication Date: 1997-11-21

Citations: 27

DOI: https://doi.org/10.1007/s002220050195

Locations

  • Inventiones mathematicae - View

Similar Works

Action Title Year Authors
+ Global Existence and Scattering Behavior for One Dimensional Wave Maps into Riemannian Manifolds 2022 Mengni Li
+ An alternative proof for small energy implies regularity for radially symmetric $$(1+2)$$-dimensional wave maps 2024 N. Lai
Yi Zhou
+ PDF Chat Wave Equation and Multiplier Estimates on Damek–Ricci Spaces 2009 Detlef Müller
Maria Vallarino
+ Convergence Theorems in Riemannian Geometry 1997 Peter Petersen
+ Convergence of Riemannian manifolds and sphere theorems 2002 윤종국
+ PDF Chat Wave decay on convex co-compact hyperbolic manifolds 2009 Colin Guillarmou
Frédéric Naud
+ None 2002 Jalal Shatah
Michaël Struwe
+ Wave maps 1997 Michaël Struwe
+ PDF Chat Global existence of wave maps in $1 + 2$ dimensions with finite energy data 1996 Stefan Müller
Michaël Struwe
+ Estimates for wave and Klein-Gordon equations on modulation spaces 2012 Jiecheng Chen
Dashan Fan
+ PDF Chat Regularity of Wave-Maps in Dimension 2 + 1 2010 Jacob Sterbenz
Daniel Tataru
+ PDF Chat Addendum to: “Lipschitz convergence of Riemannian manifolds” 1989 Robert E. Greene
Hung-Hsi Wu
+ PDF Chat Spectral convergence of Riemannian manifolds 1994 Atsushi Kasue
Hironori Kumura
+ PDF Chat Pseudo-Riemannian weakly symmetric manifolds 2011 Zhiqi Chen
Joseph A. Wolf
+ ON WEAKLY AND PSEUDO-SYMMETRIC RIEMANNIAN SPACES 2015 S. Ozen
+ Convergence of Multiplier Operators on Compact Manifolds 2024 Xianghong Chen
Dashan Fan
Ziyao Liu
+ Existence of Harmonic L 1 Functions in Complete Riemannian Manifolds 1983 L. O. Chung
+ PDF Chat Global Regularity of Wave Maps from R2+1 to H2. Small Energy 2004 Joachim Krieger
+ 1+2 dimensional radially symmetric wave maps revisit 2023 Yi Zhou
+ Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions 2010 Piero DʼAncona
Damiano Foschi
Sigmund Selberg