Semistable degenerations and period spaces for polarized K3 surfaces

Type: Article

Publication Date: 2004-10-01

Citations: 41

DOI: https://doi.org/10.1215/s0012-7094-04-12515-1

Abstract

Modular compactifications of moduli spaces for polarized K3 surfaces are constructed using the tools of logarithmic geometry in the sense of Fontaine and Illusie. The relationship between these new moduli spaces and the classical minimal and toroidal compactifications of period spaces is discussed, and it is explained how the techniques of this paper yield models for the latter spaces over number fields. The paper also contains a discussion of Picard functors for log schemes and a logarithmic version of Artin's method for proving representability by an algebraic stack.

Locations

  • Duke Mathematical Journal - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Compact moduli of K3 surfaces 2023 Valery Alexeev
Philip Engel
+ Compact moduli of K3 surfaces 2021 Valery Alexeev
Philip Engel
+ On the period of Li, Pertusi and Zhao's symplectic variety 2022 Franco Giovenzana
Luca Giovenzana
Claudio Onorati
+ Logarithmic stable maps 2019 Bumsig Kim
+ PDF Chat Moduli of stable maps in genus one and logarithmic geometry, I 2019 Dhruv Ranganathan
Keli S. Santos-Parker
Jonathan Wise
+ On the period of Li, Pertusi, and Zhao’s symplectic variety 2023 Franco Giovenzana
Luca Giovenzana
Claudio Onorati
+ PDF Chat Logarithmic tautological rings of the moduli spaces of curves 2024 Rahul Pandharipande
Dhruv Ranganathan
Johannes Schmitt
Pim Spelier
+ K3-Surfaces and Enriques Surfaces 2004 Wolf Barth
Klaus Hulek
Chris Peters
A. Van de Ven
+ Logarithmic Stable Maps 2008 Bumsig Kim
+ Moduli spaces and period mappings of genus one fibered K3 surfaces 2023 Benson Farb
Eduard Looijenga
+ PDF Chat K-stability and birational models of moduli of quartic K3 surfaces 2022 Kenneth Ascher
Kristin DeVleming
Yuchen Liu
+ Arithmetic occult period maps 2020 Jeffrey D. Achter
+ PDF Chat ORBIT PARAMETRIZATIONS FOR K3 SURFACES 2016 Manjul Bhargava
Wei Ho
Abhinav Kumar
+ PDF Chat A classification of modular compactifications of the space of pointed elliptic curves by Gorenstein curves 2023 Sebastian Bozlee
Bob Kuo
Adrian Neff
+ Compactification of the moduli of polarized abelian varieties and mirror symmetry 2014 Yuecheng Zhu
+ Lattice polarized K3 surfaces and Siegel modular forms 2012 Adrian Clingher
Charles F. Doran
+ K-stability and birational models of moduli of quartic K3 surfaces 2021 Kenneth Ascher
Kristin DeVleming
Yuchen Liu
+ PDF Chat The Geometry and Moduli of K3 Surfaces 2015 Andrew Harder
Alan Thompson
+ Log minimal model program for the moduli space of stable curves of genus three 2007 Donghoon Hyeon
Yongnam Lee
+ PDF Chat The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties 2010 Stefan Kebekus
Sándor J. Kovács