PERIODICITY IN SEQUENCES DEFINED BY LINEAR RECURRENCE RELATIONS

Type: Article

Publication Date: 1930-10-15

Citations: 8

DOI: https://doi.org/10.1073/pnas.16.10.663

Abstract

A sequence of rational integers u0, u1, u2, ...(1) is defined in terms of an initial set u0, u1, ..., uk-1 by the recurrence relation un+k + a1un+k-1 + ... + akun = a, n ≥ 0, (2) where a1, a2, ..., ak are given rational integers. The author examines (1) for periodicity with respect to a rational integral modulus m. Carmichael (1) has shown that (1) is periodic for (ak, p) = 1 and has given periods (mod m) for the case where the prime divisors of m are greater than k. The present note gives a period for (1) (mod m) without restriction on m. The results include those of Carmichael. The author also shows that if p divides ak (1) is periodic after a determined number of initial terms and obtains a period.

Locations

  • Proceedings of the National Academy of Sciences - View
  • PubMed Central - View
  • Europe PMC (PubMed Central) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ PDF Chat On sequences defined by linear recurrence relations 1931 H. T. Engstrom
+ PDF Chat Periodicity of the rational numbers 2019 José Carlos de Oliveira
Matheus Pereira Lobo
+ PDF Chat Linear recurrence sequences and periodicity of multidimensional continued fractions 2016 Nadir Murru
+ Linear recurrence sequences and periodicity of multidimensional continued fractions 2017 Nadir Murru
+ Linear recurrence sequences and periodicity of multidimensional continued fractions 2017 Nadir Murru
+ A Note on Initial Digits of Recurrence Sequences 1998 Siniša Slijepčević
+ The Periodicity for a Class of Recurring Sequences 2007 LE Mao-hua
+ PDF Chat An enumerative problem in the arithmetic of linear recurring series 1935 Morgan Ward
+ PDF Chat On the periodicity of an arithmetical function 2008 Shaofang Hong
Yujuan Yang
+ PDF Chat Rational periodic sequences for the Lyness recurrence 2011 Armengol Gasull
Vı́ctor Mañosa
Xavier Xarles
+ PDF Chat On the periods of generalized Fibonacci recurrences 1994 Richard P. Brent
+ PDF Chat Remarks on a conjecture on certain integer sequences 2006 Shigeki Akiyama
Horst Brunotte
Attila Pethö
Wolfgang Steiner
+ PDF Chat ON PERIODICITY OF RECURRENT SEQUENCES OF THE SECOND AND THE THIRD ORDER 2022 O. Karlova
K. Katyrynchuk
V. Protsenko
+ PDF Chat Linear recurrence sequences satisfying congruence conditions 2014 Gregory Minton
+ On the rational recursive sequence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mi>A</mml:mi><mml:mo>+</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:… 2007 Kenneth S. Berenhaut
Katherine M. Donadio
John D. Foley
+ Factorizations of some periodic linear recurrence systems 2021 Curtis Cooper
Richard Parry
+ PDF Chat A new algorithm for 𝑝-adic continued fractions 2023 Nadir Murru
Giuliano Romeo
+ Algorithm to Detect Periodicity by Interleaving Sequences 2019 G. Tony Jacobs
+ Integer sequences counting periodic points 2002 Graham Everest
Yash R. Puri
Thomas Ward
+ Arithmetic Properties of Periodic Maps 2004 Zhi‐Wei Sun

Works Cited by This (0)

Action Title Year Authors