On Birkhoff Coordinates for KdV

Type: Article

Publication Date: 2001-10-01

Citations: 24

DOI: https://doi.org/10.1007/s00023-001-8595-0

Locations

  • Annales Henri Poincaré - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Birkhoff coordinates for KdV on phase spaces of distributions 2005 Thomas Kappeler
C. Möhr
Peter Topalov
+ On the well-posedness of the periodic KdV equation in high regularity classes 2008 Thomas Kappeler
Jürgen Pöschel
+ On the Periodic Kdv Equation in 2008 Thomas Kappeler
Jürgen Pöschel
+ On the periodic KdV equation in weighted Sobolev spaces 2008 Jürgen Pöschel
Thomas Kappeler
+ Multilinear estimates for periodic KdV equations and applications 2001 Jim Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ ON THE WELLPOSEDNESS OF THE KDV-K-S EQUATION IN PERIODIC SOBOLEV SPACES 2022 Yolanda Silvia Santiago Ayala
+ PDF Chat Qualitative Features of Periodic Solutions of KdV 2013 Thomas Kappeler
B. Schaad
Peter Topalov
+ On the Existence of Global Solutions for the KdV Equation with Quasi-Periodic Initial Data 2012 David Damanik
Michael Goldstein
+ On the Existence and Uniqueness of Global Solutions for the KdV Equation with Quasi-Periodic Initial Data 2012 David Damanik
Michael A. Goldstein
+ PDF Chat On the extension of the frequency maps of the KdV and the KdV2 equations 2016 Thomas Kappeler
Jan-Cornelius Molnar
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vişan
+ PDF Chat On Local Well-posedness of the Periodic Korteweg-de Vries Equation Below $H^{-\frac{1}{2}}(\mathbb{T})$ 2024 Ryan McConnell
Seungly Oh
+ On the Existence and Uniqueness of Global Solutions for the KdV Equation with Quasi-Periodic Initial Data 2012 David Damanik
Michael Goldstein
+ On the symplectic phase space of KdV 2007 Thomas Kappeler
Frédéric Serier
Peter Topalov
+ Modified energies for the periodic generalized KdV equation and applications 2021 Fabrice Planchon
Nikolay Tzvetkov
Nicola Visciglia
+ PDF Chat Multilinear estimates for periodic KdV equations, and applications 2003 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ On the wellposedness of the KdV equation on the space of pseudomeasures 2016 Thomas Kappeler
Jan-Cornelius Molnar
+ PDF Chat Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes 2012 Qifan Li
+ Modified energies for the periodic generalized KdV equation and applications 2022 Fabrice Planchon
Nikolay Tzvetkov
Nicola Visciglia
+ On the wellposedness of the KdV/KdV2 equations and their frequency maps 2017 Jan-Cornelius Molnar
Thomas Kappeler