Expectation-maximization Gaussian-mixture approximate message passing

Type: Article

Publication Date: 2012-03-01

Citations: 62

DOI: https://doi.org/10.1109/ciss.2012.6310932

Download PDF

Abstract

When recovering a sparse signal from noisy compressive linear measurements, the distribution of the signal's non-zero coefficients can have a profound affect on recovery mean-squared error (MSE). If this distribution was apriori known, one could use efficient approximate message passing (AMP) techniques for nearly minimum MSE (MMSE) recovery. In practice, though, the distribution is unknown, motivating the use of robust algorithms like Lasso-which is nearly minimax optimal-at the cost of significantly larger MSE for non-least-favorable distributions. As an alternative, we propose an empirical-Bayesian technique that simultaneously learns the signal distribution while MMSE-recovering the signal-according to the learned distribution-using AMP. In particular, we model the non-zero distribution as a Gaussian mixture, and learn its parameters through expectation maximization, using AMP to implement the expectation step. Numerical experiments confirm the state-of-the-art performance of our approach on a range of signal classes.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Expectation-Maximization Gaussian-Mixture Approximate Message Passing 2013 Jeremy Vila
Philip Schniter
+ PDF Chat An empirical-bayes approach to recovering linearly constrained non-negative sparse signals 2013 Jeremy Vila
Philip Schniter
+ Empirical-Bayes Approaches to Recovery of Structured Sparse Signals via Approximate Message Passing 2015 Jeremy Vila
+ A Concise Tutorial on Approximate Message Passing 2022 Qiuyun Zou
Hongwen Yang
+ PDF Chat Plug-And-Play Learned Gaussian-mixture Approximate Message Passing 2021 Osman Musa
Peter Jung
Giuseppe Caire
+ Plug-And-Play Learned Gaussian-mixture Approximate Message Passing 2020 Osman Musa
Peter Jung
Giuseppe Caire
+ Plug-And-Play Learned Gaussian-mixture Approximate Message Passing 2020 Osman Musa
Peter Jung
Giuseppe Caire
+ Computationally Efficient Sparse Bayesian Learning via Generalized Approximate Message Passing 2015 Fuwei Li
Jun Fang
Huiping Duan
Zhi Chen
Hongbin Li
+ PDF Chat Computationally efficient sparse Bayesian learning via generalized approximate message passing 2016 Xianbing Zou
Fuwei Li
Jun Fang
Hongbin Li
+ Sparse Signal Recovery using Generalized Approximate Message Passing with Built-in Parameter Estimation 2016 Shuai Huang
Trac D. Tran
+ PDF Chat Sparse signal recovery using generalized approximate message passing with built-in parameter estimation 2017 Shuai Huang
Trac D. Tran
+ An Expectation-Maximization Approach to Tuning Generalized Vector Approximate Message Passing 2018 Christopher A. Metzler
Philip Schniter
Richard G. Baraniuk
+ An Expectation-Maximization Approach to Tuning Generalized Vector Approximate Message Passing 2018 Christopher A. Metzler
Philip Schniter
Richard G. Baraniuk
+ Approximate Message Passing With Parameter Estimation for Heavily Quantized Measurements 2022 Shuai Huang
Deqiang Qiu
Trac D. Tran
+ Scampi: a robust approximate message-passing framework for compressive imaging 2016 Jean Barbier
Eric W. Tramel
Florent Krząkała
+ PDF Chat Near Optimal Compressed Sensing Without Priors: Parametric SURE Approximate Message Passing 2015 Chunli Guo
Mike E. Davies
+ Generalized Approximate Message Passing for Estimation with Random Linear Mixing 2010 Sundeep Rangan
+ PDF Chat An Empirical-Bayes Approach to Recovering Linearly Constrained Non-Negative Sparse Signals 2014 Jeremy Vila
Philip Schniter
+ Generalized Approximate Message Passing for Cosparse Analysis Compressive Sensing 2013 Mark Borgerding
Philip Schniter
Sundeep Rangan
+ Generalized Approximate Message Passing for Cosparse Analysis Compressive Sensing 2013 Mark Borgerding
Philip Schniter
Sundeep Rangan

Works That Cite This (39)

Action Title Year Authors
+ PDF Chat Approximate Message Passing With Unitary Transformation for Robust Bilinear Recovery 2020 Zhengdao Yuan
Qinghua Guo
Man Luo
+ Swift-Link: A Compressive Beam Alignment Algorithm for Practical mmWave Radios 2018 Nitin Jonathan Myers
Amine Mezghani
Robert W. Heath
+ Approximate Message Passing With Parameter Estimation for Heavily Quantized Measurements 2022 Shuai Huang
Deqiang Qiu
Trac D. Tran
+ Sparse Multinomial Logistic Regression via Approximate Message Passing 2016 Evan Byrne
Philip Schniter
+ PDF Chat Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning 2014 Ulugbek S. Kamilov
Sundeep Rangan
Alyson K. Fletcher
Michaël Unser
+ PDF Chat Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian Learning 2012 Zhilin Zhang
Tzyy‐Ping Jung
Scott Makeig
Bhaskar D. Rao
+ PDF Chat Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems 2018 Chongwen Huang
Lei Liu
Chau Yuen
Sumei Sun
+ PDF Chat Efficient DOA Estimation Method for Reconfigurable Intelligent Surfaces Aided UAV Swarm 2022 Peng Chen
Zhimin Chen
Beixiong Zheng
Xianbin Wang
+ Multi-user beamforming in RIS-aided communications and experimental validations 2023 Zhibo Zhou
Haifan Yin
Li Tan
Ruikun Zhang
Kai Wang
Yingzhuang Liu
+ PDF Chat Efficient large-scale face clustering using an online Mixture of Gaussians 2022 David Montero
Naiara Aginako
Basilio Sierra
Marcos Nieto