Type: Article
Publication Date: 2012-04-11
Citations: 86
DOI: https://doi.org/10.1214/11-aihp414
Dans beaucoup d'applications, on cherche à effectuer une inférence statistique sur des paramètres définis à partir de la mesure spectrale d'une F-matrice, matrice obtenue comme le produit d'une matrice de covariance du tableau de variables indépendantes (Xjk)p×n1 et de l'inverse d'une autre matrice de covariance (Yjk)p×n2. Les variables sont soient toutes réelles soient complexes. Il est donc utile d'étudier les distributions asymptotiques des estimateurs de ces paramètres associés à la F-matrice. Dans cet article, nous établissons des théorèmes centraux limites pour les statistiques linéaires du spectre de la F-matrice dans la limite où p, n1, n2 tendent vers l'infini en restant de même ordre, et donnons des formules exactes pour leurs moyennes et covariances. De plus, l'hypothèse que les variables (Xjk)p×n1 et (Yjk)p×n2 sont i.i.d. et la restriction que le quatrième moment est égal à 2 ou 3 comme dans Bai et Silverstein (Ann. Probab. 32 (2004) 553–605) sont affaiblies de la manière suivante; les coefficients (Xjk)p×n1 et (Yjk)p×n2 sont indépendants mais non nécessairement équidistribués, pourvu qu'ils aient le même quatrième moment dans chaque tableau. Par conséquent, nous obtenons le théorème de la limite centrale pour les statistiques linéaires de la matrice beta qui est de la forme (I + d ⋅ F matrix)−1, où d est une constante et I la matrice identité.