A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation

Type: Article

Publication Date: 1983-01-01

Citations: 67

DOI: https://doi.org/10.1090/s0002-9947-1983-0712258-4

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Superscript asterisk Baseline f left-parenthesis x right-parenthesis equals sup Underscript t greater-than 0 Endscripts StartAbsoluteValue upper T Subscript t Baseline f left-parenthesis x right-parenthesis EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:munder> <mml:mo movablelimits="true" form="prefix">sup</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{T^{\ast } }f(x) = \sup _{t &gt; 0}|{T_t}f(x)|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper T Subscript t Baseline f right-parenthesis Superscript ModifyingAbove With caret Baseline left-parenthesis xi right-parenthesis equals e Superscript i t StartAbsoluteValue xi EndAbsoluteValue squared Baseline ModifyingAbove f With caret left-parenthesis xi right-parenthesis slash StartAbsoluteValue xi EndAbsoluteValue Superscript 1 slash 4"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mi>f</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mrow /> <mml:mo stretchy="false">^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mi>t</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>f</mml:mi> <mml:mo stretchy="false">^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">({T_t}f)^{\hat {}}(\xi ) = {e^{it|\xi |^2}}\hat f(\xi )/|\xi {|^{1/4}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that, given any finite interval <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Underscript upper I Endscripts StartAbsoluteValue upper T Superscript asterisk Baseline f EndAbsoluteValue squared d x less-than-or-slanted-equals upper C Subscript upper I Baseline integral Underscript bold upper R Endscripts StartAbsoluteValue f left-parenthesis x right-parenthesis EndAbsoluteValue squared d x"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>I</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>f</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mspace width="thickmathspace" /> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>I</mml:mi> </mml:msub> </mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mspace width="thickmathspace" /> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\int _I {|{T^{\ast } }f{|^2}\;dx \leqslant {C_I}\int _{\mathbf {R}} {|f(x){|^2}\;dx} }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and that the above inequality is false with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> replaced by any <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 2"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This maximal operator is related to solutions of the Schrödinger equation.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A Strong Type (2,2) Estimate for a Maximal Operator Associated to the Schrodinger Equation 1983 Carlos E. Kenig
Alberto Ruiz
+ L Estimates of the Maximal Schrödinger operator in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2024 Xiumin Du
J. Li
+ An estimate for the number of bound states of the Schrödinger operator in two dimensions 2003 Mihai Stoiciu
+ Gradient estimates for Schrödinger operators with characterizations of 𝐵𝑀𝑂_{ℒ} on Heisenberg groups 2022 Qingze Lin
+ PDF Chat A note on the Schrödinger maximal function 2016 Jean Bourgain
+ A version of Gordon’s theorem for multi-dimensional Schrödinger operators 2003 David Damanik
+ PDF Chat Weak type estimates for a singular convolution operator on the Heisenberg group 1991 Loukas Grafakos
+ A sharp 𝑘-plane Strichartz inequality for the Schrödinger equation 2018 Jonathan Bennett
Neal Bez
Taryn C. Flock
Susana Gutiérrez
Marina Iliopoulou
+ PDF Chat The gap between the first two eigenvalues of a one-dimensional Schrödinger operator with symmetric potential 1991 Shoshana Abramovich
+ A sharp Schrödinger maximal estimate in R[superscript 2] 2017 Xiumin Du
Larry Guth
Xiaochun Li
+ Schrödinger operator with decreasing potential in a cylinder 2021 N. Filonov
+ A Liouville type theorem for the Schrödinger operator 1999 Antonios D. Melas
+ PDF Chat Subcriticality and gaugeability of the Schrödinger operator 1992 Z. Zhao
+ On the location of the essential spectrum of Schrödinger operators 2001 Giorgio Metafune
Diego Pallara
+ PDF Chat A sharp Schrödinger maximal estimate in $\mathbb{R}^2$ 2017 Xiumin Du
Larry Guth
Xiaochun Li
+ PDF Chat 𝐿^{𝑝} estimates for Schrödinger evolution equations 1985 Mikhaël Balabane
Hassan Emamirad
+ PDF Chat A dense set of operators with tiny commutants 1991 Domingo A. Herrero
+ PDF Chat An extension of the Fuglede commutativity theorem modulo the Hilbert-Schmidt class to operators of the form ∑𝑀_{𝑛}𝑋𝑁_{𝑛} 1983 Gary Weiss
+ PDF Chat Asymptotic completeness for classes of two, three, and four particle Schrödinger operators 1980 George A. Hagedorn
+ PDF Chat A radial estimate for the maximal operator associated with the free Schrödinger equation 2006 Sichun Wang