Lyapunov exponent for the parabolic Anderson model in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="bold">R</mml:mi><mml:mi>d</mml:mi></mml:msup></mml:math>

Type: Article

Publication Date: 2006-03-10

Citations: 62

DOI: https://doi.org/10.1016/j.jfa.2006.01.007

Locations

  • Journal of Functional Analysis - View

Similar Works

Action Title Year Authors
+ PDF Chat The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent 2014 Dirk Erhard
Frank den Hollander
G. Maillard
+ PDF Chat The parabolic Anderson model in a dynamic random environment: space-time ergodicity for the quenched Lyapunov exponent 2014 Dirk Erhard
Frank den Hollander
G. Maillard
+ The parabolic Anderson model in a dynamic random environment: basic properties of the quenched Lyapunov exponent 2012 Dirk Erhard
Frank den Hollander
Grégory Maillard
+ PDF Chat Lyapunov exponents for the one-dimensional parabolic Anderson model with drift 2008 Alexander Drewitz
+ Lyapunov exponents for the one-dimensional parabolic Anderson model with drift 2008 Alexander Drewitz
+ Lyapunov exponents for the one-dimensional parabolic Anderson model with drift 2008 Alexander Drewitz
+ PDF Chat Quenched Lyapunov Exponent for the Parabolic Anderson Model in a Dynamic Random Environment 2011 Jürgen Gärtner
Frank den Hollander
Grégory Maillard
+ Lyapunov exponents for the one-dimensional parabolic Anderson model with drift 2008 TU Berlin
+ The parabolic Anderson model in a dynamic random environment: space-time ergodicity for the quenched Lyapunov exponent 2013 Dirk Erhard
Frank den Hollander
Grégory Maillard
+ Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment 2010 Jürgen Gärtner
Frank den Hollander
Grégory Maillard
+ Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment 2010 Jürgen Gärtner
Frank den Hollander
Grégory Maillard
+ The parabolic Anderson model in a dynamic random environment: absence of strongly catalytic behavior for the quenched Lyapunov exponent 2013 Dirk Erhard
den WThF Frank Hollander
G. Maillard
+ PDF Chat Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space 2005 Ionuţ Florescu
Frédéri Viens
+ Small Kappa Asymptotics of the Almost Sure Lyapunov Exponent for the Continuum Parabolic Anderson Model 2012 Michael Rael
+ Small Kappa Asymptotics of the Almost Sure Lyapunov Exponent for the Continuum Parabolic Anderson Model 2012 Michael Rael
+ PDF Chat Lyapunov exponent for the parabolic anderson model with lévy noise 2005 M. Cranston
Thomas Mountford
Tokuzo Shiga
+ PDF Chat Asymptotics for the almost sure lyapunov exponent for the solution of the parabolic Anderson problem 2001 René Carmona
Leonid Koralov
Stanislav Molchanov
+ Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment 2010 Jürgen Gärtner
W.Th.F. den Hollander
G. Maillard
+ Parabolic Anderson model with a finite number of moving catalysts 2010 Fabienne Castell
Onur Gün
Grégory Maillard
+ Asymptotic properties of the parabolic Anderson model 2011 Adrian Schnitzler