The lap-counting function for linear mod one transformations II: the Markov chain for generalized lap numbers

Type: Article

Publication Date: 1997-02-01

Citations: 9

DOI: https://doi.org/10.1017/s0143385797069691

Locations

  • Ergodic Theory and Dynamical Systems - View

Similar Works

Action Title Year Authors
+ The lap-counting function for linear mod one transformations III: the period of a Markov chain 1997 Leopold Flatto
Jeffrey C. Lagarias
+ The lap-counting function for linear mod one transformations I: explicit formulas and renormalizability 1996 Leopold Flatto
Jeffrey C. Lagarias
+ PDF Chat Generalized $\beta$-transformations and the entropy of unimodal maps 2017 Daniel J. Thompson
+ Generalized beta-transformations and the entropy of unimodal maps 2016 Daniel J. Thompson
+ Generalized beta-transformations and the entropy of unimodal maps 2016 Daniel James David Thompson
+ Rational points on non-linear horocycles and pigeonhole statistics for the fractional parts of $\sqrt{n}$ 2021 Sam Pattison
+ Bowen鈥揊ranks Groups Associated with Linear Mod One Transformations 2003 Nuno Martins
J. Sousa Ramos
+ On the Beta Transformation 2018 Linas Vepstas
+ Large deviation principle for linear mod 1 transformations 2020 Yong Moo Chung ad Kenichiro Yamamoto
+ PDF Chat Gaps in 鈭歯 mod 1 and ergodic theory 2004 Noam D. Elkies
Curtis T. McMullen
+ Rotational beta expansion: ergodicity and soficness 2017 Shigeki Akiyama
Jonathan Caalim
+ PDF Chat The $\beta$-transformation with a hole at $0$: the general case 2024 Pieter C. Allaart
Derong Kong
+ Large deviation principle for linear mod 1 transformations 2020 Yong Moo Chung ad Kenichiro Yamamoto
+ PDF Chat Pomeau-Manneville maps are global-local mixing 2020 Claudio Bonanno
Marco Lenci
+ Rotational beta expansion: Ergodicity and Soficness 2015 Shigeki Akiyama
Jonathan Caalim
+ A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART IX: QUASI-ERGODICITY 2008 Leon O. Chua
Giovanni E. Pazienza
L谩szl贸 Orz贸
Valeriy I. Sbitnev
JINWOOK SHIN
+ Ergodic aspects of the generalized Lehner continued fractions 2023 Juan Fern谩ndez S谩nchez
Jer贸nimo L贸pez-Salazar Codes
Juan B. Seoane Sep煤lveda
Wolfgang Trutschnig
+ The $(-\beta)$-shift and associated Zeta Function 2017 Florent Nguema Ndong
+ Beer and continued fractions with periodic periods 1999 Alf van der Poorten
+ Continued fractions with $SL(2, Z)$-branches: combinatorics and entropy 2016 Carlo Carminati
Stefano Isola
Giulio Tiozzo

Works Cited by This (0)

Action Title Year Authors