A lower bound for the spectral radius

Type: Article

Publication Date: 1980-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0002-9939-1980-0580999-0

Abstract

We prove an inequality for a problem of Carathéodory type: given <italic>n</italic> inner functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m 1 comma m 2 comma ellipsis comma m Subscript n Baseline"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>m</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{m_1},{m_2}, \ldots ,{m_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to find the smallest norm of an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript normal infinity"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> function such that the first <italic>n</italic> terms of its power series coincide with those of the product <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m 1 midline-horizontal-ellipsis m Subscript n"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>m</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{m_1} \cdots {m_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As an application, we obtain a lower bound for the spectral radius of an <italic>n</italic>-dimensional operator on Hilbert space in terms of its norm and the norm of its <italic>n</italic>th power.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A Lower Bound for the Spectral Radius 1980 Vlastimil Pták
+ PDF Chat On the joint spectral radius. II 1992 Muneo Chō
Tadasi Huruya
Volker Wróbel
+ Spectral Radius 1982 Paul R. Halmos
+ An interpolation result for the spectral radius 1986 Peter Meyer-Nieberg
+ A Formula for the Spectral Radius of an Operator 1968 Richard B. Holmes
+ Spectral gap for hyperbounded operators 2004 Feng‐Yu Wang
+ Spectral Radius 1982 Paul R. Halmos
+ PDF Chat A Remark About the Spectral Radius 2014 Andreas Thom
+ Continuity of the spectral radius 2024 Horst R. Thieme
+ PDF Chat Spectral radius and spectral norm 1974 Hȧrald K. Wimmer
+ Nested bounds for the spectral radius 1969 Ivo Marek
Richard S. Varga
+ PDF Chat The essential spectral radius of dominated positive operators 1993 Josep Martínez
+ PDF Chat A sharp estimate in an operator inequality 1992 R. McEachin
+ PDF Chat An induction principle for spectral and rearrangement inequalitities 1974 Kong Ming Chong
+ Spectral Approximation 1986 Robert K. Goodrich
Karl E. Gustafson
+ A spectral mean value theorem for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="italic">GL</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> 2010 Xiaoqing Li
+ PDF Chat On Numerical Radius of a Matrix and Estimation of Bounds for Zeros of a Polynomial 2012 Kallol Paul
Santanu Bag
+ Maximizing the spectral radius of a matrix product 2014 L. Elsner
K. P. Hadeler
+ PDF Chat Similarity of a linear strict set-contraction and the radius of the essential spectrum 1987 Mau-Hsiang Shih
+ Bounds for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si7.svg"><mml:mi mathvariant="double-struck">A</mml:mi></mml:math>-numerical radius based on an extension of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e27" altimg="si8.svg"><mml:mi>A</mml:mi></mml:math>-Buzano inequality 2023 Fuad Kittaneh
Ali Zamani