Perturbation analysis of weakly discrete kinks

Type: Article

Publication Date: 1996-09-01

Citations: 23

DOI: https://doi.org/10.1103/physreve.54.2912

Abstract

We present a perturbation theory of static kink solutions of discrete Klein-Gordon chains. The unperturbed solutions correspond to the kinks of the adjoint partial differential equation. The perturbation theory is based on a reformulation of the discrete chain problem into a partial differential equation with spatially modulated mass density. The first-order corrections to the kink solutions are obtained analytically and are shown to agree with exact numerical results. We use these findings to reconsider the problem of calculating the Peierls-Nabarro barrier. \textcopyright{} 1996 The American Physical Society.

Locations

  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Topological discrete kinks 1999 Martin Speight
+ PDF Chat A discrete $\phi^4$ system without a Peierls - Nabarro barrier 1997 Martin Speight
+ PDF Chat Discrete Klein–Gordon models with static kinks free of the Peierls–Nabarro potential 2005 Sergey V. Dmitriev
P. G. Kevrekidis
Nobuhiro YOSHIKAWA
+ PDF Chat Exact static solutions for discrete<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>Ď•</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>models free of the Peierls-Nabarro barrier: Discretized first-integral approach 2006 Sergey V. Dmitriev
P. G. Kevrekidis
Nobuhiro YOSHIKAWA
D. J. Frantzeskakis
+ Kink ratchets in the Klein-Gordon lattice free of the Peierls-Nabarro potential 2009 Sergey V. Dmitriev
Avinash Khare
Sergey V. Suchkov
+ The Discrete Klein–Gordon Model 2024 R. Carretero-González
D. J. Frantzeskakis
P. G. Kevrekidis
+ PDF Chat Kinks in dipole chains 2006 Martin Speight
Yaroslav Zolotaryuk
+ PDF Chat Normal form for travelling kinks in discrete Klein–Gordon lattices 2006 Gérard Iooss
Dmitry E. Pelinovsky
+ A review of specially discretized Klein-Gordon models 2020 Yu. V. Bebikhov
Igor A. Shepelev
Sergey V. Dmitriev
+ PDF Chat Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions 2000 Serge F. Mingaleev
Yuri Gaididei
E. Majerníková
S. Shpyrko
+ PDF Chat Moving lattice kinks and pulses: An inverse method 1999 Sergej Flach
Yaroslav Zolotaryuk
K. Kladko
+ PDF Chat Static Kinks in Chains of Interacting Atoms 2020 Haggai Landa
Cecilia Cormick
Giovanna Morigi
+ A discrete homotopy perturbation method for non-linear Schrodingerequation 2015 Hafiz Abdul Wahab
Khalid Usman
Muhammad Naeem
Sarfraz Ahmad
Saira Bhatti
Muhammad Shahzad
Hazrat Ali
+ Asymptotic Calculation of Discrete Nonlinear Wave Interactions 2005 P. G. Kevrekidis
Avinash Khare
Aashima Saxena
Iosif Bena
A. R. Bishop
+ Continuum limit for discrete NLS with memory effect 2019 Ricardo Grande
+ Mathematical and numerical aspects of discrete kinetic theory 2008 Henri Cabannes
Renée Gatignol
Dominique Leguillon
+ PDF Chat A quantum Peierls-Nabarro barrier 2000 Martin Speight
+ PDF Chat Numerical computation of travelling breathers in Klein–Gordon chains 2005 Yannick Sire
Guillaume James
+ Collision of ϕ4 kinks free of the Peierls–Nabarro barrier in the regime of strong discreteness 2020 Alidad Askari
Aliakbar Moradi Marjaneh
Zhanna G. Rakhmatullina
Mahdy Ebrahimi Loushab
Danial Saadatmand
Vakhid A. Gani
P. G. Kevrekidis
Sergey V. Dmitriev
+ Klein-Gordon Difference Equation for Small Distances 2005 F.Henning Harmuth
Beate Meffert

Works Cited by This (0)

Action Title Year Authors