On a singular quasilinear anisotropic elliptic boundary value problem

Type: Article

Publication Date: 1995-01-01

Citations: 30

DOI: https://doi.org/10.1090/s0002-9947-1995-1277103-8

Abstract

We consider the problem <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u Superscript a Baseline u Subscript x x Baseline plus u Superscript b Baseline u Subscript y y Baseline plus p left-parenthesis bold x right-parenthesis equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>u</mml:mi> <mml:mi>a</mml:mi> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>x</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>u</mml:mi> <mml:mi>b</mml:mi> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>y</mml:mi> <mml:mi>y</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">x</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{u^a}{u_{xx}} + {u^b}{u_{yy}} + p({\mathbf {x}}) = 0</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a greater-than-or-slanted-equals 0"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">a \geqslant 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="b greater-than-or-slanted-equals 0"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">b \geqslant 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, on a smooth convex bounded region in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with Dirichlet boundary conditions. We show that if the positive function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is uniformly bounded away from zero, then the problem has a classical solution.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the singular boundary value problem for elliptic equations 1973 Kazunari Hayashida
+ PDF Chat An elliptic equation with an indefinite sublinear boundary condition 2016 Humberto Ramos Quoirin
Kenichiro Umezu
+ ON A SINGULAR QUASILINEAR ELLIPTIC BOUNDARY VALUE PROBLEM 1998 杨会生
杨作东
+ PDF Chat A nonlinear integral equation occurring in a singular free boundary problem 1984 Klaus Höllig
John A. Nohel
+ PDF Chat On a singular elliptic equation 1983 Wei Ni
+ On elliptic equations with singular potentials and nonlinear boundary conditions 2018 Lucas C. F. Ferreira
Sérgio L. N. Neves
+ PDF Chat Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain 2024 Karol Wroński
+ PDF Chat On an elliptic equation with concave and convex nonlinearities 1995 Thomas Bartsch
Michel Willem
+ PDF Chat On a singularly perturbed semi-linear problem with Robin boundary conditions 2020 Qianqian Hou
Tai‐Chia Lin
Zhi‐An Wang
+ PDF Chat Boundary value problems associated with singular strongly nonlinear equations with functional terms 2020 Stefano Biagi
Alessandro Calamai
Cristina Marcelli
Francesca Papalini
+ Solutions for a quasilinear elliptic problem with indefinite nonlinearity with critical growth 2023 Gustavo S. A. Costa
Giovany M. Figueiredo
José Carlos de Oliveira
+ PDF Chat Singular Elliptic PDEs: an extensive overview 2024 Francescantonio Oliva
Francesco Petitta
+ PDF Chat Singularly perturbed quadratically nonlinear Dirichlet problems 1986 Albert J. DeSanti
+ PDF Chat The Dirichlet problem for radially homogeneous elliptic operators 1990 Richard F. Bass
+ On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent 2007 Mihai Mihăilescu
Vicenţiu D. Rădulescu
+ PDF Chat On an elliptic boundary value problem not in divergence form 1983 Nguyên Phuong Các
+ On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations 2003 V. N. Denisov
A. B. Muravnik
+ PDF Chat On a superlinear elliptic boundary value problem at resonance 1979 P. J. McKenna
+ Singular semilinear elliptic problems on unbounded domains in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2022 Anumol Joseph
Lakshmi Sankar
+ PDF Chat On a Singular Quasilinear Anisotropic Elliptic Boundary Value Problem 1995 Y. S. Choi
A. C. Lazer
P. J. McKenna