Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet Eigenvalues

Type: Article

Publication Date: 2009-01-01

Citations: 15

DOI: https://doi.org/10.1137/080724022

Abstract

The Dirichlet eigenvalue or “drum” problem in a domain $\Omega\subset\mathbb{R}^2$ becomes numerically challenging at high eigenvalue (frequency) E. In this regime the method of particular solutions (MPS) gives spectral accuracy for many domain shapes. It requires a number of degrees of freedom scaling as $\sqrt{E}$, the number of wavelengths on the boundary, in contrast to direct discretization for which this scaling is E. Our main result is an inclusion bound on eigenvalues that is a factor $O(\sqrt{E})$ tighter than the classical bound of Moler–Payne and that is optimal in that it reflects the true slopes of curves appearing in the MPS. We also present an MPS variant that cures a normalization problem in the original method, while evaluating basis functions only on the boundary. This method is efficient at high frequencies, where we show that, in practice, our inclusion bound can give three extra digits of eigenvalue accuracy with no extra effort.

Locations

  • SIAM Journal on Numerical Analysis - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Fast Computation of High‐Frequency Dirichlet Eigenmodes via Spectral Flow of the Interior Neumann‐to‐Dirichlet Map 2013 Alex H. Barnett
Andrew Hassell
+ Fast computation of high frequency Dirichlet eigenmodes via the spectral flow of the interior Neumann-to-Dirichlet map 2011 Alex H. Barnett
Andrew Hassell
+ Fast computation of high frequency Dirichlet eigenmodes via the spectral flow of the interior Neumann-to-Dirichlet map 2011 Alex H. Barnett
Andrew Hassell
+ PDF Chat Comparable upper and lower bounds for boundary values of Neumann eigenfunctions and tight inclusion of eigenvalues 2018 Alex H. Barnett
Andrew Hassell
Melissa Tacy
+ Estimates on Neumann eigenfunctions at the boundary, and the "Method of Particular Solutions" for computing them 2011 Andrew Hassell
Alexander H. Barnett
+ Estimates on Neumann eigenfunctions at the boundary, and the "Method of Particular Solutions" for computing them 2011 Alex H. Barnett
Andrew Hassell
+ PDF Chat Boundary Quasi-Orthogonality and Sharp Inclusion Bounds for Large Dirichlet Eigenvalues 2011 Alex H. Barnett
Andrew Hassell
+ PDF Chat Reduced Basis Approximation for Maxwell’s Eigenvalue Problem and Parameter-Dependent Domains 2024 Max Kappesser
Anna Ziegler
Sebastian Schöps
+ Increasing the accuracy of eigenvalue computation in the spectral problem 1993 V. G. Prikazchikov
A. R. Semchuk
+ Reduced Basis Approximation for Maxwell's Eigenvalue Problem and Parameter-Dependent Domains 2023 Max Kappesser
Anna Ziegler
Sebastian Schöps
+ Boundary quasi-orthogonality and sharp inclusion bounds for large Dirichlet eigenvalues 2010 Alex H. Barnett
Andrew Hassell
+ PDF Chat Computation of eigenvalues by numerical upscaling 2014 Axel Målqvist
Daniel Peterseim
+ Robust and efficient solution of the drum problem via Nystrom approximation of the Fredholm determinant 2014 Lin Zhao
Alex H. Barnett
+ PDF Chat Eigenvalue Characterization and Computation for the Laplacian on General 2-D Domains 2008 Patrick Guidotti
James V. Lambers
+ PDF Chat Robust and Efficient Solution of the Drum Problem via Nyström Approximation of the Fredholm Determinant 2015 Lin Zhao
Alex H. Barnett
+ PDF Chat Stability of High-Order Perturbative Methods for the Computation of Dirichlet–Neumann Operators 2001 David P. Nicholls
Fernando Reitich
+ Numerical Methods for Eigenvalue Problems 2020 Federico Milano
Ioannis Dassios
Muyang Liu
Georgios Tzounas
+ Numerical methods for eigenvalue problems 2003 Robert Plato
+ Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians 2012 Pedro R. S. Antunes
Pedro Freitas
+ Numerical optimization of Dirichlet-Laplace eigenvalues on domains in surfaces 2013 Régis Straubhaar

Works That Cite This (11)

Action Title Year Authors
+ Boundary quasi-orthogonality and sharp inclusion bounds for large Dirichlet eigenvalues 2010 Alex H. Barnett
Andrew Hassell
+ PDF Chat Fast Computation of High‐Frequency Dirichlet Eigenmodes via Spectral Flow of the Interior Neumann‐to‐Dirichlet Map 2013 Alex H. Barnett
Andrew Hassell
+ PDF Chat An Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic Surfaces 2012 Alexander Strohmaier
Ville Uski
+ PDF Chat Boundary Quasi-Orthogonality and Sharp Inclusion Bounds for Large Dirichlet Eigenvalues 2011 Alex H. Barnett
Andrew Hassell
+ Fast computation of high frequency Dirichlet eigenmodes via the spectral flow of the interior Neumann-to-Dirichlet map 2011 Alex H. Barnett
Andrew Hassell
+ Estimates on Neumann eigenfunctions at the boundary, and the "Method of Particular Solutions" for computing them 2011 Alex H. Barnett
Andrew Hassell
+ PDF Chat Estimates on Neumann eigenfunctions at the boundary, and the “method of particular solutions” for computing them 2012 Andrew Hassell
Alex H. Barnett
+ PDF Chat Comparable upper and lower bounds for boundary values of Neumann eigenfunctions and tight inclusion of eigenvalues 2018 Alex H. Barnett
Andrew Hassell
Melissa Tacy
+ PDF Chat Geometrical Structure of Laplacian Eigenfunctions 2013 Denis S. Grebenkov
B.-T. Nguyen
+ PDF Chat A boundary integral equation method for mode elimination and vibration confinement in thin plates with clamped points 2017 Alan E. Lindsay
Bryan Quaife
Laura Wendelberger