Unbounded Solutions of ÿ + <i>g(y)</i> = <i>p{t)</i>

Type: Article

Publication Date: 1966-01-01

Citations: 50

DOI: https://doi.org/10.1112/jlms/s1-41.1.491

Locations

  • Journal of the London Mathematical Society - View

Similar Works

Action Title Year Authors
+ Unbounded Solutions of an Equation ÿ+<i>g{y)</i> =<i>p(t)</i> , with <i>p(t)</i> Periodic and Bounded, and <i>g(y)</i> /<i>y</i> → ∞ as <i>y</i> →±∞ 1966 J. E. Littlewood
+ Some Properties of Solutions of ẍ + <i>p</i> (<i>t</i>) <i>g</i> (<i>x, x</i>) = 0 1969 Athanassios G. Kartsatos
+ 80.34 On solutions of <i>m</i><sup>2</sup> + <i>n</i><sup>2</sup> = 1 + <i>l</i><sup>2</sup> 1996 Christopher Bradley
+ PDF Chat Appendix (<i>a</i> ) 1900 R. T.
+ 84.52 Iterative solutions of <i>F(x)</i> = 0 2000 Robert Murphy
+ PDF Chat <i>On the Series</i> 1+(p1)3+{p(p+1)1.2}3+… 1901 Frank Morley
+ Solutions of the Matrix Equation <i>A</i> <sup>*</sup> =<i>XA</i> =<i>AX</i> 1966 Ira Katz
Martin H. Pearl
+ Non-existence of <i>G</i> 2000 T. Peterfalvi
+ 2988. Solutions of the equation <i>f(x)</i>=log<i>x</i> under certain conditions 1962 S. Parameśwaran
+ Solvability of the Equation <i>ax</i> <sup>2</sup> +<i>By</i> <sup>2</sup> = <i>p</i> 1966 L. J. Mordell
+ Proof That <i>x</i><sup>2</sup> – 3<i>y</i><sup>2</sup> = –1 Has No Integral Solutions 1963 C. D. Olds
+ Sur L'Équation <i>p</i> + 2 = <i>P</i> <sub>2</sub> Dans Les Petits Intervalles 1994 Jiansheng Wu
+ The Solutions of <i>x</i><sup><i>y</i></sup> = <i>y</i><sup><i>x</i></sup>, <i>x</i>&gt;0, <i>y</i>&gt;0, <i>x</i>≠<i>y</i>, and their Graphical Representation 1931 H. L. Slobin
+ The Bounded Reaction-Diffusion Cauchy Problem with <i>f ∊ L</i> 2015 J. C. Meyer
D. J. Needham
+ Density Problems for <i>p</i> (<i>n</i> ) 1970 Torleiv Kløve
+ On solutions of δ<i>u</i>=<i>f</i>(<i>u</i>) 1957 Joachim Keller
+ On the Solutions in <i>L</i> <sup>2</sup> (−∞, ∞) of <i>y</i> ″ + (λ − <i>q</i> (<i>x</i> ))<i>y</i> = 0 when <i>q</i> is Rapidly Increasing 1964 M. Giertz
+ POSITIVE SOLUTIONS OF <i>Δu</i>+<i>u</i><sup>(<i>n</i>+2)/(<i>n</i>–2)</sup> = 0 ON CONTRACTIBLE DOMAINS 2017 Weiyue Ding
+ Infinitely many solutions for<i>p</i>-Kirchhoff equation with concave-convex nonlinearities in RN 2015 Caisheng Chen
Qiang Chen
+ <i>Mathematical Methods with Applications to Problems in the Physical Sciences</i> 1986 Ted Clay Bradbury
Harvey S. Picker

Works Cited by This (0)

Action Title Year Authors