Type: Article
Publication Date: 2010-01-01
Citations: 19
DOI: https://doi.org/10.1155/2010/868193
We establish a generalized Ulam-Hyers stability theorem in a Šerstnev probabilistic normed space (briefly, Šerstnev PN-space) endowed with . In particular, we introduce the notion of approximate Jensen mapping in PN-spaces and prove that if an approximate Jensen mapping in a Šerstnev PN-space is continuous at a point then we can approximate it by an everywhere continuous Jensen mapping. As a version of a theorem of Schwaiger, we also show that if every approximate Jensen type mapping from the natural numbers into a Šerstnev PN-space can be approximated by an additive mapping, then the norm of Šerstnev PN-space is complete.