An Asymptotically Efficient Solution to the Bandwidth Problem of Kernel Density Estimation

Type: Article

Publication Date: 1985-09-01

Citations: 74

DOI: https://doi.org/10.1214/aos/1176349653

Abstract

A data-driven method of choosing the bandwidth, $h$, of a kernel density estimator is heuristically motivated by considering modifications of the Kullback-Leibler or pseudo-likelihood cross-validation function. It is seen that this means of choosing $h$ is asymptotically equivalent to taking the $h$ that minimizes some compelling error criteria such as the average squared error and the integrated squared error. Thus, for a given kernel function, the bandwidth can be chosen optimally without making precise smoothness assumptions on the underlying density.

Locations

  • The Annals of Statistics - View - PDF

Similar Works

Action Title Year Authors
+ Optimal bandwidth selection for a kernel density with a location-scale property 2020 Celal Aydın
Neclâ Gündüz
Jale BalibeyoÄźlu
+ PDF Chat The Amount of Noise Inherent in Bandwidth Selection for a Kernel Density Estimator. 1985 P. Hall
J. S. Marron
+ Bandwidth selection for kernel log-density estimation 2016 Martin L. Hazelton
Murray P. Cox
+ PDF Chat Explicit Solutions for the Asymptotically-Optimal Bandwidth in Cross Validation 2010 Karim M. Abadir
Michel Lubrano
+ Contribution to the bandwidth choice for kernel density estimates 2007 Ivana Horová
Jiří Zelinka
+ PDF Chat A cross-validation approach to bandwidth selection for a kernel-based estimate of the density of a conditional expectation 2011 Athanassios N. Avramidis
+ Asymptotically best bandwidth selectors in kernel density estimation 1994 WonJeong Kim
B.U. Park
J. S. Marron
+ Asymptotically Best Bandwidth Selectors in Kernel Density Estimation 1991 B. Park
W. Kim
J. S. Marron
+ PDF Chat Optimal Bandwidth Selection for Kernel Density Functionals Estimation 2015 Su Chen
+ Bandwidth Selection in Kernel Density Estimation 2010 HĂĄkon Kile
+ A cross-validation approach to bandwidth selection for a kernel-based estimate of the density of a conditional expectation 2011 Athanassios N. Avramidis
+ On optimal data-based bandwidth selection in kernel density estimation 1991 Peter Hall
Simon J. Sheather
M. C. Jones
J. S. Marron
+ Asymptotically optimal choice of the smoothing parameter in a nonparametric kernel estimator for a probability density 1995 Yu. K. Belyaev
Oleg Seleznev
+ On a class of kernel density estimate bandwidth selectors 1991 M. C. Jones
Russell F. Kappenman
+ Data-dependent bandwidth choice for a grade density kernel estimate 1993 J. Ćwik
Jan Mielniczuk
+ A Comparative Study for Bandwidth Selection in Kernel Density Estimation 2008 Omar Eidous
Mohammad Abd Alrahem Shafeq Marie
Mohammed H. Baker Al-Haj Ebrahem
+ PDF Chat Data-Based Optimal Bandwidth for Kernel Density Estimation of Statistical Samples 2018 Zhenwei Li
Ping He
+ A Brief Survey of Bandwidth Selection for Density Estimation 1996 M. C. Jones
J. S. Marron
Simon J. Sheather
+ A Brief Survey of Bandwidth Selection for Density Estimation 1996 M. C. Jones
J. S. Marron
Simon J. Sheather
+ An optimal local bandwidth selector for kernel density estimation 1999 Martin L. Hazelton