Type: Article
Publication Date: 1995-08-07
Citations: 6734
DOI: https://doi.org/10.1103/physrevlett.75.1226
A simple model with a novel type of dynamics is introduced in order to investigate the emergence of self-ordered motion in systems of particles with biologically motivated interaction. In our model particles are driven with a constant absolute velocity and at each time step assume the average direction of motion of the particles in their neighborhood with some random perturbation ($\eta$) added. We present numerical evidence that this model results in a kinetic phase transition from no transport (zero average velocity, $| {\bf v}_a | =0$) to finite net transport through spontaneous symmetry breaking of the rotational symmetry. The transition is continuous since $| {\bf v}_a |$ is found to scale as $(\eta_c-\eta)^\beta$ with $\beta\simeq 0.45$.