Type: Article
Publication Date: 2014-08-15
Citations: 134
DOI: https://doi.org/10.1103/physreva.90.022316
A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, written k-uniform, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudits GHZ states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several new classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N>5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Additionally, single vectors of another class of 2-uniform states are one-to-one related to maximal sets of mutually unbiased bases. Furthermore, we establish links between existence of k-uniform states, classical and quantum error correction codes and provide a novel graph representation for such states.