Hard edge tail asymptotics

Type: Article

Publication Date: 2011-01-01

Citations: 23

DOI: https://doi.org/10.1214/ecp.v16-1682

Abstract

Let $\Lambda$ be the limiting smallest eigenvalue in the general $(\beta,a)$-Laguerre ensemble of random matrix theory. That is, $\Lambda$ is the $n\to\infty$ distributional limit of the (scaled) minimal point drawn from the density proportional to $\Pi_1\leq i\leq j\leq n$ $$\left|\lambda_i-\lambda_j\right|^\beta\prod_{i=1}^n\lambda_i^{\frac{\beta}{2}(a+1)-1}e^{-\frac{\beta}{2}\lambda_i}$$ on $(\mathbb{R}_+^n$. Here $\beta>0$, $a> -1$; for $\beta=1,2,4$ and integer $a$, this object governs the singular values of certain rank $n$ Gaussian matrices. We prove that $$ \mathbb{P}(\Lambda>\lambda)=e^{-\frac{\beta}{2}\lambda+2\gamma\sqrt{\lambda}}\lambda^{-\frac{\gamma(\gamma+1-\beta/2)}{2\beta}} e(\beta,a)(1+o(1))$$ as $\lambda\to\infty$ in which $$\gamma = \frac{\beta}{2} (a+1)-1$$ and $e(\beta, a) > 0$ is a constant (which we do not determine). This estimate complements/extends various results previously available for special values of $\beta$ and $a$.

Locations

  • arXiv (Cornell University) - View - PDF
  • Electronic Communications in Probability - View - PDF

Similar Works

Action Title Year Authors
+ Hard edge tail asymptotics 2011 José A. Ramı́rez
Brian Rider
Ofer Zeitouni
+ Hard edge tail asymptotics 2011 José A. Ramírez
Brian Rider
Ofer Zeitouni
+ PDF Chat Asymptotic Expansions of the Limit Laws of Gaussian and Laguerre (Wishart) Ensembles at the Soft Edge 2024 Folkmar Bornemann
+ Approximate Spielman-Teng theorems for random matrices with heavy-tailed entries: a combinatorial view 2019 Vishesh Jain
+ PDF Chat Exponential moments for disk counting statistics at the hard edge of random normal matrices 2023 Yacin Ameur
Christophe Charlier
Joakim Cronvall
Jonatan Lenells
+ An edge CLT for the log determinant of Laguerre beta ensembles 2022 Elizabeth W Collins-Woodfin
Han Gia Le
+ PDF Chat Optimal tail estimates in $\beta$-ensembles and applications to last passage percolation 2024 Jnaneshwar Baslingker
Riddhipratim Basu
Sudeshna Bhattacharjee
Manjunath Krishnapur
+ Local laws of random matrices and their applications 2019 Fan Yang
+ Asymptotic correlations at the spectrum edge of random matrices 1995 Taro Nagao
Peter J. Forrester
+ Exponential moments for disk counting statistics at the hard edge of random normal matrices 2022 Yacin Ameur
Christophe Charlier
Joakim Cronvall
Jonatan Lenells
+ Asymptotic Theory of Eigenvectors for Large Random Matrices 2019 Jianqing Fan
Yingying Fan
Xiao Han
Jinchi Lv
+ Non-asymptotic theory of random matrices: extreme singular values 2010 Mark Rudelson
Roman Vershynin
+ Non-asymptotic theory of random matrices: extreme singular values 2010 Mark Rudelson
Roman Vershynin
+ PDF Chat Non-asymptotic Theory of Random Matrices: Extreme Singular Values 2011 Mark Rudelson
Roman Vershynin
+ Rate of convergence at the hard edge for various Pólya ensembles of positive definite matrices 2020 Peter J. Forrester
Shi-Hao Li
+ An edge CLT for the log determinant of Gaussian ensembles. 2020 Iain M. Johnstone
Yegor Klochkov
Alexei Onatski
Damian Pavlyshyn
+ PDF Chat Hard edge asymptotics of correlation functions between singular values and eigenvalues 2025 Matthias Allard
+ Finite size corrections at the hard edge for the Laguerre $\beta$ ensemble 2019 Peter J. Forrester
Allan K. Trinh
+ PDF Chat Limiting distribution of eigenvalues in the large sieve matrix 2020 Florin P. Boca
Maksym Radziwiłł
+ On the smallest singular value of symmetric random matrices 2020 Vishesh Jain
Ashwin Sah
Mehtaab Sawhney