H^p-theory for generalized M-harmonic functions in the unit ball

Type: Article

Publication Date: 1996-01-01

Citations: 44

DOI: https://doi.org/10.1512/iumj.1996.45.1961

Abstract

In this paper we study the space of functions in the unit ball in C n annihilated by the differential operators ∆ α,β , α, β ∈ C, given byWe obtain growth estimates and several equivalent characterizations of those such functions having boundary values in H p (S n ), in terms of maximal and area functions.

Locations

  • Indiana University Mathematics Journal - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF

Similar Works

Action Title Year Authors
+ A Note onBMOand Bloch Space of Generalized (α,β)-Harmonic Functions 1998 Miroljub Jevtić
+ PDF Chat Area Integral Characterization of ${\cal M}$-Harmonic Hardy Spaces on the Unit Ball 2000 Miloš Arsenović
Miroljub Jevtić
+ Generalized area operators on L p (ℝ n ) 2014 Ruifang Hu
Bolin Ma
Xianmin Xu
+ PDF Chat A generalized $H^{\infty}$ functional calculus for operators on subspaces of $L^{p}$ and application to maximal regularity 1998 Gilles Lancien
Christian Le Merdy
+ Problems and Properties for p-Valent Functions Involving a New Generalized Differential Operator 2017 Ala Amourah
Tariq Al-Hawary
Maslina Darus
+ Mobius Invariant Hilbert Spaces of Holomorphic Functions in the Unit Ball of ℂ n 1991 Kehe Zhu
+ $H^p$-maximal regularity and operator valued multipliers on Hardy spaces 2007 Christian Le Merdy
Shangquan Bu
+ PDF Chat Maximal and Area Integral Characterizations of Hardy-Sobolev Spaces in the Unit Ball of $\mathbb C^n$ 1988 Patrick Ahern
Joaquim Bruna
+ PDF Chat Holomorphic and $\scr M$-harmonic functions with finite Dirichlet integral on the unit ball of ${\Bbb C}\sp n$ 2001 M. Stoll
+ M-harmonic Besovp-spaces and Hankel operators in the Bergman space on the ball in ℂ n 1991 Kyong T. Hahn
El Hassan Youssfi
+ PDF Chat Hyperbolic mean growth of bounded holomorphic functions in the ball 2002 Ern Gun Kwon
+ PDF Chat DIVISION PROBLEM IN GENERALIZED GROWTH SPACES ON THE UNIT BALL IN ℂn 2015 Hong Rae Cho
Han-Wool Lee
Soo-Hyun Park
+ $L^2$ estimates for a Nikodym maximal function associated to space curves 2022 Aswin Govindan Sheri
+ PDF Chat Generalizations of harmonic functions in $${\mathbb R}^m$$ 2021 Daniel Alfonso Santiesteban
Yudier Peña Pérez
Ricardo Abreu Blaya
+ Holomorphic Campanato Spaces on the Unit Ball 2014 Jianfei Wang
Jie Xiao
+ PDF Chat A critical growth rate for harmonic and subharmonic functions in the open ball in $R^n$ 1987 K. Samotij
+ PDF Chat Boundary limits and non-integrability of $\mathcal M$-subharmonic functions in the unit ball of $\mathbb C^n (n\ge 1)$ 1997 M. Stoll
+ B<sup>p</sup>, $\mathcal{Q}_p$ Spaces and Harmonic Majorants 2005 Enrique Ramírez de Arellano
L. F. Reséndis O.
L. M. Tovar S.
+ PDF Chat Hardy-Sobolev spaces and maximal functions 1990 Akihiko Miyachi
+ A Moebius invariant space of H-harmonic functions on the ball 2025 Petr Blaschke
Miroslav Engliš
El Hassan Youssfi