Approximate revenue maximization in interdependent value settings

Type: Article
Publication Date: 2014-05-30
Citations: 35
DOI: https://doi.org/10.1145/2600057.2602858

Abstract

We study revenue maximization in settings where agents' values are interdependent: each agent receives a signal drawn from a correlated distribution and agents' values are functions of all of the signals. We introduce a variant of the generalized VCG auction with reserve prices and random admission, and show that this auction gives a constant approximation to the optimal expected revenue in matroid environments. Our results do not require any assumptions on the signal distributions, however, they require the value functions to satisfy a standard single-crossing property and a concavity-type condition.

Locations

  • arXiv (Cornell University)
  • CiteSeer X (The Pennsylvania State University)

Ask a Question About This Paper

Summary

Login to see paper summary

Similar Works

We study revenue maximization in settings where agents' values are interdependent: each agent receives a signal drawn from a correlated distribution and agents' values are functions of all of the … We study revenue maximization in settings where agents' values are interdependent: each agent receives a signal drawn from a correlated distribution and agents' values are functions of all of the signals. We introduce a variant of the generalized VCG auction with reserve prices and random admission, and show that this auction gives a constant approximation to the optimal expected revenue in matroid environments. Our results do not require any assumptions on the signal distributions, however, they require the value functions to satisfy a standard single-crossing property and a concavity-type condition.
We study revenue maximization in settings where agents' values are interdependent: each agent receives a signal drawn from a correlated distribution and agents' values are functions of all of the … We study revenue maximization in settings where agents' values are interdependent: each agent receives a signal drawn from a correlated distribution and agents' values are functions of all of the signals. We introduce a variant of the generalized VCG auction with reserve prices and random admission, and show that this auction gives a constant approximation to the optimal expected revenue in matroid environments. Our results do not require any assumptions on the signal distributions, however, they require the value functions to satisfy a standard single-crossing property and a concavity-type condition.
We study auction design within the widely acclaimed model of interdependent values, introduced by Milgrom and Weber [1982]. In this model, every bidder $i$ has a private signal $s_i$ for … We study auction design within the widely acclaimed model of interdependent values, introduced by Milgrom and Weber [1982]. In this model, every bidder $i$ has a private signal $s_i$ for the item for sale, and a public valuation function $v_i(s_1,\ldots,s_n)$ which maps every vector of private signals (of all bidders) into a real value. A recent line of work established the existence of approximately-optimal mechanisms within this framework, even in the more challenging scenario where each bidder's valuation function $v_i$ is also private. This body of work has primarily focused on single-item auctions with two natural classes of valuations: those exhibiting submodularity over signals (SOS) and $d$-critical valuations. In this work we advance the state of the art on interdependent values with private valuation functions, with respect to both SOS and $d$-critical valuations. For SOS valuations, we devise a new mechanism that gives an improved approximation bound of $5$ for single-item auctions. This mechanism employs a novel variant of an "eating mechanism", leveraging LP-duality to achieve feasibility with reduced welfare loss. For $d$-critical valuations, we broaden the scope of existing results beyond single-item auctions, introducing a mechanism that gives a $(d+1)$-approximation for any environment with matroid feasibility constraints on the set of agents that can be simultaneously served. Notably, this approximation bound is tight, even with respect to single-item auctions.
Interdependent values make basic auction design tasks -- in particular maximizing welfare truthfully in single-item auctions -- quite challenging. Eden et al. recently established that if the bidders valuation functions … Interdependent values make basic auction design tasks -- in particular maximizing welfare truthfully in single-item auctions -- quite challenging. Eden et al. recently established that if the bidders valuation functions are submodular over their signals (a.k.a. SOS), a truthful 4-approximation to the optimal welfare exists. We show existence of a mechanism that is truthful and achieves a tight 2-approximation to the optimal welfare when signals are binary. Our mechanism is randomized and assigns bidders only 0 or 0.5 probabilities of winning the item. Our results utilize properties of submodular set functions, and extend to matroid settings.
Interdependent values make basic auction design tasks -- in particular maximizing welfare truthfully in single-item auctions -- quite challenging. Eden et al. recently established that if the bidders valuation functions … Interdependent values make basic auction design tasks -- in particular maximizing welfare truthfully in single-item auctions -- quite challenging. Eden et al. recently established that if the bidders valuation functions are submodular over their signals (a.k.a. SOS), a truthful 4-approximation to the optimal welfare exists. We show existence of a mechanism that is truthful and achieves a tight 2-approximation to the optimal welfare when signals are binary. Our mechanism is randomized and assigns bidders only 0 or 0.5 probabilities of winning the item. Our results utilize properties of submodular set functions, and extend to matroid settings.
We consider a setting where an auctioneer sells a single item to $n$ potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the … We consider a setting where an auctioneer sells a single item to $n$ potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the valuation of each agent is a known function of all $n$ private signals. This captures settings such as valuations for artwork, oil drilling rights, broadcast rights, and many more. In the interdependent value setting, all previous work has assumed a so-called {\sl single-crossing condition}. Single-crossing means that the impact of agent $i$'s private signal, $s_i$, on her own valuation is greater than the impact of $s_i$ on the valuation of any other agent. It is known that without the single-crossing condition an efficient outcome cannot be obtained. We study welfare maximization for interdependent valuations through the lens of approximation. We show that, in general, without the single-crossing condition, one cannot hope to approximate the optimal social welfare any better than the approximation given by assigning the item to a random bidder. Consequently, we introduce a relaxed version of single-crossing, {\sl $c$-single-crossing}, parameterized by $c\geq 1$, which means that the impact of $s_i$ on the valuation of agent $i$ is at least $1/c$ times the impact of $s_i$ on the valuation of any other agent ($c=1$ is single-crossing). Using this parameterized notion, we obtain a host of positive results. We propose a prior-free deterministic mechanism that gives an $(n-1)c$-approximation guarantee to welfare. We then show that a random version of the proposed mechanism gives a prior-free universally truthful $2c$-approximation to the optimal welfare for any concave $c$-single crossing setting (and a $2\sqrt{n}c^{3/2}$-approximation in the absence of concavity). We extend this mechanism to a universally truthful mechanism that gives $O(c^2)$-approximation to the optimal revenue.
We study combinatorial auctions with interdependent valuations. In such settings, each agent $i$ has a private signal $s_i$ that captures her private information, and the valuation function of every agent … We study combinatorial auctions with interdependent valuations. In such settings, each agent $i$ has a private signal $s_i$ that captures her private information, and the valuation function of every agent depends on the entire signal profile, ${\bf s}=(s_1,\ldots,s_n)$. The literature in economics shows that the interdependent model gives rise to strong impossibility results, and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single item auctions, or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed {\em single crossing} (or variants thereof). We consider the class of {\em submodular over signals} (SOS) valuations (without imposing any single-crossing type assumption), and provide the first welfare approximation guarantees for multi-dimensional combinatorial auctions, achieved by universally ex-post IC-IR mechanisms. Our main results are: $(i)$ 4-approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; $(ii)$ 4-approximation for any combinatorial auction with multi-dimensional signals and {\em separable}-SOS valuations; and $(iii)$ $(k+3)$- and $(2\log(k)+4)$-approximation for any combinatorial auction with single-dimensional signals, with $k$-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, $d$-SOS, while losing a factor that depends on $d$.
We study combinatorial auctions with interdependent valuations, where each agent i has a private signal s i that captures her private information and the valuation function of every agent depends … We study combinatorial auctions with interdependent valuations, where each agent i has a private signal s i that captures her private information and the valuation function of every agent depends on the entire signal profile, [Formula: see text]. The literature in economics shows that the interdependent model gives rise to strong impossibility results and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single-item auctions or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed single crossing (or variants thereof). We consider the class of submodular over signals (SOS) valuations (without imposing any single crossing-type assumption) and provide the first welfare approximation guarantees for multidimensional combinatorial auctions achieved by universally ex post incentive-compatible, individually rational mechanisms. Our main results are (i) four approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; (ii) four approximation for any combinatorial auction with multidimensional signals and separable-SOS valuations; and (iii) (k + 3) and (2 log(k) + 4) approximation for any combinatorial auction with single-dimensional signals, with k-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, d-approximate SOS, while losing a factor that depends on d. Funding: A. Eden was partially supported by NSF Award IIS-2007887, the European Research Council (ERC) under the European Union's Seventh Framework Programme [FP7/2007-2013]/ERC Grant Agreement 337122, by the Israel Science Foundation [Grant 317/17], and by an Amazon research award. M. Feldman received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program [Grant Agreement 866132], by the Israel Science Foundation [Grant 317/17], by an Amazon research award, and by the NSF-BSF [Grant 2020788]. The work of K. Goldner was supported partially by NSF awards DMS-1903037 and CNS-2228610 and a Shibulal Family Career Development Professorship. A. R. Karlin was supported by the NSF-CCF [Grant 1813135].
We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. … We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. Each bidder $i$ also has a valuation function $v_i(s_1,\ldots,s_n)$ mapping the (private) signals of all buyers to a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to standard private values, it is generally assumed that each bidder's valuation function $v_i$ is public knowledge. But in many situations, the seller may not know how a bidder aggregates signals into a valuation. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individual rationality for the case where the valuation functions are private to the bidders. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism under a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than an $n$-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an $O(\log^2 n)$-approximation for buyers with private signals and valuations under the SOS condition. We also give a tight $\Theta(k)$-approximation for the case each agent's valuation depends on at most $k$ other signals even for unknown $k$.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Private Interdependent ValuationsAlon Eden, Kira Goldner, and Shuran ZhengAlon Eden, Kira Goldner, and Shuran … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Private Interdependent ValuationsAlon Eden, Kira Goldner, and Shuran ZhengAlon Eden, Kira Goldner, and Shuran Zhengpp.2920 - 2939Chapter DOI:https://doi.org/10.1137/1.9781611977073.113PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We consider the single-item interdependent value setting, where there is a single item sold by a monopolist, n buyers, and each buyer has a private signal si describing a piece of information about the item. Additionally, each bidder i has a valuation function vi(s1, …, sn) mapping the (private) signals of all buyers into a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to the standard private values model, it is generally assumed that each bidder's valuation function vi is public knowledge to the seller or all other buyers. But in many situations, the seller may not know the bidders' valuation functions—how a bidder aggregates signals into a valuation is often their private information. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individually rationality for the case where the valuation functions are private to the bidders, and thus may be strategically misreported to the seller. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism when the valuations satisfy a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound on the social welfare can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than n-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an O(log2 n)-approximation randomized mechanism for buyers with private signals and valuations under the SOS condition. We also give a tight Θ(k)-approximation mechanism for the case each agent's valuation depends on at most k other signals even for unknown k. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_{1}, \ldots, s_{n}$ of the n bidders … The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_{1}, \ldots, s_{n}$ of the n bidders and public valuation functions $v_{i}\left(s_{1}, \ldots, s_{n}\right)$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and private valuations, and established $O\left(\log ^{2} n\right)$-approximation for SOS valuations. In this paper we show that this setting admits a constant factor approximation, settling the open question raised by Eden et al. (2022).
The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_1, \ldots, s_n$ of the $n$ bidders … The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_1, \ldots, s_n$ of the $n$ bidders and public valuation functions $v_i(s_1, \ldots, s_n)$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and private valuations, and established $O(\log^2 n)$-approximation for SOS valuations. In this paper we show that this setting admits a constant factor approximation, settling the open question raised by Eden et al. (2022).
We investigate revenue guarantees for auction mechanisms in a model where a distribution is specified for each bidder, but only some of the distributions are correct. The subset of bidders … We investigate revenue guarantees for auction mechanisms in a model where a distribution is specified for each bidder, but only some of the distributions are correct. The subset of bidders whose distribution is correctly specified (henceforth, the "green bidders") is unknown to the auctioneer. The question we address is whether the auctioneer can run a mechanism that is guaranteed to obtain at least as much revenue, in expectation, as would be obtained by running an optimal mechanism on the green bidders only. For single-parameter feasibility environments, we find that the answer depends on the feasibility constraint. For matroid environments, running the optimal mechanism using all the specified distributions (including the incorrect ones) guarantees at least as much revenue in expectation as running the optimal mechanism on the green bidders. For any feasibility constraint that is not a matroid, there exists a way of setting the specified distributions and the true distributions such that the opposite conclusion holds.
We investigate revenue guarantees for auction mechanisms in a model where a distribution is specified for each bidder, but only some of the distributions are correct. The subset of bidders … We investigate revenue guarantees for auction mechanisms in a model where a distribution is specified for each bidder, but only some of the distributions are correct. The subset of bidders whose distribution is correctly specified (henceforth, the bidders) is unknown to the auctioneer. The question we address is whether the auctioneer can run a mechanism that is guaranteed to obtain at least as much revenue, in expectation, as would be obtained by running an optimal mechanism on the green bidders only. For single-parameter feasibility environments, we find that the answer depends on the feasibility constraint. For matroid environments, running the optimal mechanism using all the specified distributions (including the incorrect ones) guarantees at least as much revenue in expectation as running the optimal mechanism on the green bidders. For any feasibility constraint that is not a matroid, there exists a way of setting the specified distributions and the true distributions such that the opposite conclusion holds.
The paper designs revenue-maximizing auction mechanisms for agents who aim to maximize their total obtained values rather than the classical quasi-linear utilities. Several models have been proposed to capture the … The paper designs revenue-maximizing auction mechanisms for agents who aim to maximize their total obtained values rather than the classical quasi-linear utilities. Several models have been proposed to capture the behaviors of such agents in the literature. In the paper, we consider the model where agents are subject to budget and return-on-spend constraints. The budget constraint of an agent limits the maximum payment she can afford, while the return-on-spend constraint means that the ratio of the total obtained value (return) to the total payment (spend) cannot be lower than the targeted bar set by the agent. The problem was first coined by [Balseiro et al., EC 2022]. In their work, only Bayesian mechanisms were considered. We initiate the study of the problem in the worst-case model and compare the revenue of our mechanisms to an offline optimal solution, the most ambitious benchmark. The paper distinguishes two main auction settings based on the accessibility of agents' information: fully private and partially private. In the fully private setting, an agent's valuation, budget, and target bar are all private. We show that if agents are unit-demand, constant approximation mechanisms can be obtained; while for additive agents, there exists a mechanism that achieves a constant approximation ratio under a large market assumption. The partially private setting is the setting considered in the previous work [Balseiro et al., EC 2022] where only the agents' target bars are private. We show that in this setting, the approximation ratio of the single-item auction can be further improved, and a $\Omega(1/\sqrt{n})$-approximation mechanism can be derived for additive agents.
A seminal result of Bulow and Klemperer [1989] demonstrates the power of competition for extracting revenue: when selling a single item to $n$ bidders whose values are drawn i.i.d. from … A seminal result of Bulow and Klemperer [1989] demonstrates the power of competition for extracting revenue: when selling a single item to $n$ bidders whose values are drawn i.i.d. from a regular distribution, the simple welfare-maximizing VCG mechanism (in this case, a second price-auction) with one additional bidder extracts at least as much revenue in expectation as the optimal mechanism. The beauty of this theorem stems from the fact that VCG is a {\em prior-independent} mechanism, where the seller possesses no information about the distribution, and yet, by recruiting one additional bidder it performs better than any prior-dependent mechanism tailored exactly to the distribution at hand (without the additional bidder). In this work, we establish the first {\em full Bulow-Klemperer} results in {\em multi-dimensional} environments, proving that by recruiting additional bidders, the revenue of the VCG mechanism surpasses that of the optimal (possibly randomized, Bayesian incentive compatible) mechanism. For a given environment with i.i.d. bidders, we term the number of additional bidders needed to achieve this guarantee the environment's {\em competition complexity}. Using the recent duality-based framework of Cai et al. [2016] for reasoning about optimal revenue, we show that the competition complexity of $n$ bidders with additive valuations over $m$ independent, regular items is at most $n+2m-2$ and at least $\log(m)$. We extend our results to bidders with additive valuations subject to downward-closed constraints, showing that these significantly more general valuations increase the competition complexity by at most an additive $m-1$ factor. We further improve this bound for the special case of matroid constraints, and provide additional extensions as well.
A seminal result of Bulow and Klemperer [1989] demonstrates the power of competition for extracting revenue: when selling a single item to $n$ bidders whose values are drawn i.i.d. from … A seminal result of Bulow and Klemperer [1989] demonstrates the power of competition for extracting revenue: when selling a single item to $n$ bidders whose values are drawn i.i.d. from a regular distribution, the simple welfare-maximizing VCG mechanism (in this case, a second price-auction) with one additional bidder extracts at least as much revenue in expectation as the optimal mechanism. The beauty of this theorem stems from the fact that VCG is a {\em prior-independent} mechanism, where the seller possesses no information about the distribution, and yet, by recruiting one additional bidder it performs better than any prior-dependent mechanism tailored exactly to the distribution at hand (without the additional bidder). In this work, we establish the first {\em full Bulow-Klemperer} results in {\em multi-dimensional} environments, proving that by recruiting additional bidders, the revenue of the VCG mechanism surpasses that of the optimal (possibly randomized, Bayesian incentive compatible) mechanism. For a given environment with i.i.d. bidders, we term the number of additional bidders needed to achieve this guarantee the environment's {\em competition complexity}. Using the recent duality-based framework of Cai et al. [2016] for reasoning about optimal revenue, we show that the competition complexity of $n$ bidders with additive valuations over $m$ independent, regular items is at most $n+2m-2$ and at least $\log(m)$. We extend our results to bidders with additive valuations subject to downward-closed constraints, showing that these significantly more general valuations increase the competition complexity by at most an additive $m-1$ factor. We further improve this bound for the special case of matroid constraints, and provide additional extensions as well.
We study the problem of selling $n$ items to a single buyer with an additive valuation function. We consider the valuation of the items to be correlated, i.e., desirabilities of … We study the problem of selling $n$ items to a single buyer with an additive valuation function. We consider the valuation of the items to be correlated, i.e., desirabilities of the buyer for the items are not drawn independently. Ideally, the goal is to design a mechanism to maximize the revenue. However, it has been shown that a revenue optimal mechanism might be very complicated and as a result inapplicable to real-world auctions. Therefore, our focus is on designing a simple mechanism that achieves a constant fraction of the optimal revenue. Babaioff et al. propose a simple mechanism that achieves a constant fraction of the optimal revenue for independent setting with a single additive buyer. However, they leave the following problem as an open question: Is there a simple, approximately optimal mechanism for a single additive buyer whose value for $n$ items is sampled from a common base-value distribution? Babaioff et al. show a constant approximation factor of the optimal revenue can be achieved by either selling the items separately or as a whole bundle in the independent setting. We show a similar result for the correlated setting when the desirabilities of the buyer are drawn from a common base-value distribution. It is worth mentioning that the core decomposition lemma which is mainly the heart of the proofs for efficiency of the mechanisms does not hold for correlated settings. Therefore we propose a modified version of this lemma which is applicable to the correlated settings as well. Although we apply this technique to show the proposed mechanism can guarantee a constant fraction of the optimal revenue in a very weak correlation, this method alone can not directly show the efficiency of the mechanism in stronger correlations.

Cited by (22)

A strong assumption in Bayesian mechanism design is that the distributions of the players' private types are common knowledge to the designer and the players--the common prior assumption. An important … A strong assumption in Bayesian mechanism design is that the distributions of the players' private types are common knowledge to the designer and the players--the common prior assumption. An important problem that has received a lot of attention in both economics and computer science is to repeatedly weaken this assumption in game theory--the Wilson's Doctrine. In this work we consider, for the first time in the literature, multi-item auctions where the knowledge about the players' value distributions is scattered among the players and the seller. Each one of them privately knows some or none of the value distributions, no constraint is imposed on who knows which distributions, and the seller does not know who knows what. In such an unstructured information setting, we design mechanisms for unit-demand and additive auctions, whose expected revenue approximates that of the optimal Bayesian mechanisms by crowdsourcing the players' and the seller's knowledge. Our mechanisms are 2-step dominant-strategy truthful and the revenue increases gracefully with the amount of knowledge the players have. In particular, the revenue starts from a constant fraction of the revenue of the best known dominant-strategy truthful Bayesian mechanisms, and approaches 100 percent of the later when the amount of knowledge increases. Our results greatly improve the literature on the relationship between the amount of knowledge in the system and what mechanism design can achieve. In some sense, our results show that the common prior assumption is without much loss of generality in Bayesian auctions if one is willing to give up a fraction of the revenue.
In a multi-party machine learning system, different parties cooperate on optimizing towards better models by sharing data in a privacy-preserving way. A major challenge in learning is the incentive issue. … In a multi-party machine learning system, different parties cooperate on optimizing towards better models by sharing data in a privacy-preserving way. A major challenge in learning is the incentive issue. For example, if there is competition among the parties, one may strategically hide his data to prevent other parties from getting better models. In this paper, we study the problem through the lens of mechanism design and incorporate the features of multi-party learning in our setting. First, each agent's valuation has externalities that depend on others' types and actions. Second, each agent can only misreport a type lower than his true type, but not the other way round. We call this setting interdependent value with type-dependent action spaces. We provide the optimal truthful mechanism in the quasi-monotone utility setting. We also provide necessary and sufficient conditions for truthful mechanisms in the most general case. Finally, we show the existence of such mechanisms is highly affected by the market growth rate and provide empirical analysis.
We study combinatorial auctions with interdependent valuations, where each agent i has a private signal s i that captures her private information and the valuation function of every agent depends … We study combinatorial auctions with interdependent valuations, where each agent i has a private signal s i that captures her private information and the valuation function of every agent depends on the entire signal profile, [Formula: see text]. The literature in economics shows that the interdependent model gives rise to strong impossibility results and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single-item auctions or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed single crossing (or variants thereof). We consider the class of submodular over signals (SOS) valuations (without imposing any single crossing-type assumption) and provide the first welfare approximation guarantees for multidimensional combinatorial auctions achieved by universally ex post incentive-compatible, individually rational mechanisms. Our main results are (i) four approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; (ii) four approximation for any combinatorial auction with multidimensional signals and separable-SOS valuations; and (iii) (k + 3) and (2 log(k) + 4) approximation for any combinatorial auction with single-dimensional signals, with k-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, d-approximate SOS, while losing a factor that depends on d. Funding: A. Eden was partially supported by NSF Award IIS-2007887, the European Research Council (ERC) under the European Union's Seventh Framework Programme [FP7/2007-2013]/ERC Grant Agreement 337122, by the Israel Science Foundation [Grant 317/17], and by an Amazon research award. M. Feldman received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program [Grant Agreement 866132], by the Israel Science Foundation [Grant 317/17], by an Amazon research award, and by the NSF-BSF [Grant 2020788]. The work of K. Goldner was supported partially by NSF awards DMS-1903037 and CNS-2228610 and a Shibulal Family Career Development Professorship. A. R. Karlin was supported by the NSF-CCF [Grant 1813135].
We study the problem of multi-dimensional revenue maximization when selling $m$ items to a buyer that has additive valuations for them, drawn from a (possibly correlated) prior distribution. Unlike traditional … We study the problem of multi-dimensional revenue maximization when selling $m$ items to a buyer that has additive valuations for them, drawn from a (possibly correlated) prior distribution. Unlike traditional Bayesian auction design, we assume that the seller has a very restricted knowledge of this prior: they only know the mean $\mu_j$ and an upper bound $\sigma_j$ on the standard deviation of each item's marginal distribution. Our goal is to design mechanisms that achieve good revenue against an ideal optimal auction that has full knowledge of the distribution in advance. Informally, our main contribution is a tight quantification of the interplay between the dispersity of the priors and the aforementioned robust approximation ratio. Furthermore, this can be achieved by very simple selling mechanisms. More precisely, we show that selling the items via separate price lotteries achieves an $O(\log r)$ approximation ratio where $r=\max_j(\sigma_j/\mu_j)$ is the maximum coefficient of variation across the items. If forced to restrict ourselves to deterministic mechanisms, this guarantee degrades to $O(r^2)$. Assuming independence of the item valuations, these ratios can be further improved by pricing the full bundle. For the case of identical means and variances, in particular, we get a guarantee of $O(\log(r/m))$ which converges to optimality as the number of items grows large. We demonstrate the optimality of the above mechanisms by providing matching lower bounds. Our tight analysis for the deterministic case resolves an open gap from the work of Azar and Micali [ITCS'13]. As a by-product, we also show how one can directly use our upper bounds to improve and extend previous results related to the parametric auctions of Azar et al. [SODA'13].
This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this … This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this literature focus on mechanisms with truthtelling equilibria, a.k.a., truthful mechanisms. Feng and Hartline [FOCS 2018] introduce the revelation gap to quantify the loss of the restriction to truthful mechanisms. We solve a main open question left in Feng and Hartline [FOCS 2018]; namely, we identify a non-trivial revelation gap for revenue maximization.
We consider a setting where an auctioneer sells a single item to $n$ potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the … We consider a setting where an auctioneer sells a single item to $n$ potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the valuation of each agent is a known function of all $n$ private signals. This captures settings such as valuations for artwork, oil drilling rights, broadcast rights, and many more. In the interdependent value setting, all previous work has assumed a so-called {\sl single-crossing condition}. Single-crossing means that the impact of agent $i$'s private signal, $s_i$, on her own valuation is greater than the impact of $s_i$ on the valuation of any other agent. It is known that without the single-crossing condition an efficient outcome cannot be obtained. We study welfare maximization for interdependent valuations through the lens of approximation. We show that, in general, without the single-crossing condition, one cannot hope to approximate the optimal social welfare any better than the approximation given by assigning the item to a random bidder. Consequently, we introduce a relaxed version of single-crossing, {\sl $c$-single-crossing}, parameterized by $c\geq 1$, which means that the impact of $s_i$ on the valuation of agent $i$ is at least $1/c$ times the impact of $s_i$ on the valuation of any other agent ($c=1$ is single-crossing). Using this parameterized notion, we obtain a host of positive results. We propose a prior-free deterministic mechanism that gives an $(n-1)c$-approximation guarantee to welfare. We then show that a random version of the proposed mechanism gives a prior-free universally truthful $2c$-approximation to the optimal welfare for any concave $c$-single crossing setting (and a $2\sqrt{n}c^{3/2}$-approximation in the absence of concavity). We extend this mechanism to a universally truthful mechanism that gives $O(c^2)$-approximation to the optimal revenue.
The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_{1}, \ldots, s_{n}$ of the n bidders … The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $s_{1}, \ldots, s_{n}$ of the n bidders and public valuation functions $v_{i}\left(s_{1}, \ldots, s_{n}\right)$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and private valuations, and established $O\left(\log ^{2} n\right)$-approximation for SOS valuations. In this paper we show that this setting admits a constant factor approximation, settling the open question raised by Eden et al. (2022).
We expand the literature on the price of anarchy (PoA) of simultaneous item auctions by considering settings with correlated values; we do this via the fundamental economic model of interdependent … We expand the literature on the price of anarchy (PoA) of simultaneous item auctions by considering settings with correlated values; we do this via the fundamental economic model of interdependent values (IDV). It is well-known that in multi-item settings with private values, correlated values can lead to bad PoA, which can be polynomially large in the number of agents $n$. In the more general model of IDV, we show that the PoA can be polynomially large even in single-item settings. On the positive side, we identify a natural condition on information dispersion in the market, termed $γ$-heterogeneity, which enables good PoA guarantees. Under this condition, we show that for single-item settings, the PoA of standard mechanisms degrades gracefully with $γ$. For settings with $m>1$ items we show a separation between two domains: If $n \geq m$, we devise a new simultaneous item auction with good PoA (with respect to $γ$), under limited information asymmetry. To the best of our knowledge, this is the first positive PoA result for correlated values in multi-item settings. The main technical difficulty in establishing this result is that the standard tool for establishing PoA results -- the smoothness framework -- is unsuitable for IDV settings, and so we must introduce new techniques to address the unique challenges imposed by such settings. In the domain of $n \ll m$, we establish impossibility results even for surprisingly simple scenarios.
In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private signals that capture their information about different social alternatives, and the valuation of every agent … In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private signals that capture their information about different social alternatives, and the valuation of every agent is a function of all agent signals. While interdependence has been mainly studied for auctions, it is extremely relevant for a large variety of social choice settings, including the canonical and practically important setting of public projects. The IDV model is much more realistic but also very challenging relative to the standard independent private values model. Welfare guarantees for IDV have been achieved mainly through two alternative conditions known as single-crossing and submodularity over signals (SOS). In either case, the existing theory falls short of solving the public projects setting.Our contribution is twofold: (i) We give a useful characterization of truthfulness for IDV public projects, parallel to the known characterization for independent private values, and identify the domain frontier for which this characterization applies; (ii) Using this characterization, we provide possibility and impossibility results for welfare approximation in public projects with SOS valuations. Our main impossibility result is that, in contrast to auctions, no universally truthful mechanism performs better for public projects with SOS valuations than choosing a project at random. Our main positive result applies to excludable public projects with SOS, for which we establish a constant factor approximation similar to auctions. Our results suggest that exclusion may be a key tool for achieving welfare guarantees in the IDV model.* The full version of the paper can be accessed at https://arxiv.org/abs/2204.08044. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 866132), by the Israel Science Foundation (ISF grant nos. 317/17 and 336/18), by an Amazon Research Award, and by the NSF-BSF (grant no. 2020788).
We study the revenue performance of sequential posted-price mechanisms and some natural extensions for a setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted-price … We study the revenue performance of sequential posted-price mechanisms and some natural extensions for a setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted-price mechanisms are conceptually simple mechanisms that work by proposing a “take-it-or-leave-it” offer to each buyer. We apply sequential posted-price mechanisms to single-parameter multiunit settings in which each buyer demands only one item and the mechanism can assign the service to at most k of the buyers. For standard sequential posted-price mechanisms, we prove that with the valuation distribution having finite support, no sequential posted-price mechanism can extract a constant fraction of the optimal expected revenue, even with unlimited supply. We extend this result to the case of a continuous valuation distribution when various standard assumptions hold simultaneously (i.e., everywhere-supported, continuous, symmetric, and normalized (conditional) distributions that satisfy regularity , the MHR condition , and affiliation ). In fact, it turns out that the best fraction of the optimal revenue that is extractable by a sequential posted-price mechanism is proportional to the ratio of the highest and lowest possible valuation. We prove that a simple generalization of these mechanisms achieves a better revenue performance; namely, if the sequential posted-price mechanism has for each buyer the option of either proposing an offer or asking the buyer for its valuation, then a Ω (1/max { 1, d }) fraction of the optimal revenue can be extracted, where d denotes the degree of dependence of the valuations, ranging from complete independence ( d =0) to arbitrary dependence ( d = n -1).
In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private signals that capture their information about different social alternatives, and the valuation of every agent … In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private signals that capture their information about different social alternatives, and the valuation of every agent is a function of all agent signals. While interdependence has been mainly studied for auctions, it is extremely relevant for a large variety of social choice settings, including the canonical setting of public projects. The IDV model is very challenging relative to standard independent private values, and welfare guarantees have been achieved through two alternative conditions known as {\em single-crossing} and {\em submodularity over signals (SOS)}. In either case, the existing theory falls short of solving the public projects setting. Our contribution is twofold: (i) We give a workable characterization of truthfulness for IDV public projects for the largest class of valuations for which such a characterization exists, and term this class \emph{decomposable valuations}; (ii) We provide possibility and impossibility results for welfare approximation in public projects with SOS valuations. Our main impossibility result is that, in contrast to auctions, no universally truthful mechanism performs better for public projects with SOS valuations than choosing a project at random. Our main positive result applies to {\em excludable} public projects with SOS, for which we establish a constant factor approximation similar to auctions. Our results suggest that exclusion may be a key tool for achieving welfare guarantees in the IDV model.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Private Interdependent ValuationsAlon Eden, Kira Goldner, and Shuran ZhengAlon Eden, Kira Goldner, and Shuran … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Private Interdependent ValuationsAlon Eden, Kira Goldner, and Shuran ZhengAlon Eden, Kira Goldner, and Shuran Zhengpp.2920 - 2939Chapter DOI:https://doi.org/10.1137/1.9781611977073.113PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We consider the single-item interdependent value setting, where there is a single item sold by a monopolist, n buyers, and each buyer has a private signal si describing a piece of information about the item. Additionally, each bidder i has a valuation function vi(s1, …, sn) mapping the (private) signals of all buyers into a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to the standard private values model, it is generally assumed that each bidder's valuation function vi is public knowledge to the seller or all other buyers. But in many situations, the seller may not know the bidders' valuation functions—how a bidder aggregates signals into a valuation is often their private information. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individually rationality for the case where the valuation functions are private to the bidders, and thus may be strategically misreported to the seller. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism when the valuations satisfy a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound on the social welfare can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than n-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an O(log2 n)-approximation randomized mechanism for buyers with private signals and valuations under the SOS condition. We also give a tight Θ(k)-approximation mechanism for the case each agent's valuation depends on at most k other signals even for unknown k. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
Interdependent values make basic auction design tasks -- in particular maximizing welfare truthfully in single-item auctions -- quite challenging. Eden et al. recently established that if the bidders valuation functions … Interdependent values make basic auction design tasks -- in particular maximizing welfare truthfully in single-item auctions -- quite challenging. Eden et al. recently established that if the bidders valuation functions are submodular over their signals (a.k.a. SOS), a truthful 4-approximation to the optimal welfare exists. We show existence of a mechanism that is truthful and achieves a tight 2-approximation to the optimal welfare when signals are binary. Our mechanism is randomized and assigns bidders only 0 or 0.5 probabilities of winning the item. Our results utilize properties of submodular set functions, and extend to matroid settings.
This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this … This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this literature focus on mechanisms with truthtelling equilibria, a.k.a., truthful mechanisms. Feng and Hartline (2018) introduce the revelation gap to quantify the loss of the restriction to truthful mechanisms. We solve a main open question left in Feng and Hartline (2018); namely, we identify a non-trivial revelation gap for revenue maximization. Our analysis focuses on the canonical problem of selling a single item to a single agent with only access to a single sample from the agent's valuation distribution. We identify the sample-bid mechanism (a simple non-truthful mechanism) and upper-bound its prior-independent approximation ratio by 1.835 (resp. 1.296) for regular (resp. MHR) distributions. We further prove that no truthful mechanism can achieve prior-independent approximation ratio better than 1.957 (resp. 1.543) for regular (resp. MHR) distributions. Thus, a non-trivial revelation gap is shown as the sample-bid mechanism outperforms the optimal prior-independent truthful mechanism. On the hardness side, we prove that no (possibly non-truthful) mechanism can achieve prior-independent approximation ratio better than 1.073 even for uniform distributions.
We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. … We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. Each bidder $i$ also has a valuation function $v_i(s_1,\ldots,s_n)$ mapping the (private) signals of all buyers to a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to standard private values, it is generally assumed that each bidder's valuation function $v_i$ is public knowledge. But in many situations, the seller may not know how a bidder aggregates signals into a valuation. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individual rationality for the case where the valuation functions are private to the bidders. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism under a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than an $n$-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an $O(\log^2 n)$-approximation for buyers with private signals and valuations under the SOS condition. We also give a tight $\Theta(k)$-approximation for the case each agent's valuation depends on at most $k$ other signals even for unknown $k$.
This paper considers prior-independent mechanism design, namely identifying a single mechanism that has near optimal performance on every prior distribution. We show that mechanisms with truthtelling equilibria, a.k.a., revelation mechanisms, … This paper considers prior-independent mechanism design, namely identifying a single mechanism that has near optimal performance on every prior distribution. We show that mechanisms with truthtelling equilibria, a.k.a., revelation mechanisms, do not always give optimal prior-independent mechanisms and we define the revelation gap to quantify the non-optimality of revelation mechanisms. This study suggests that it is important to develop a theory for the design of non-revelation mechanisms. Our analysis focuses on welfare maximization by single-item auctions for agents with budgets and a natural regularity assumption on their distribution of values. The all-pay auction (a non-revelation mechanism) is the Bayesian optimal mechanism; as it is prior-independent it is also the prior-independent optimal mechanism (a 1-approximation). We prove a lower bound on the prior-independent approximation of revelation mechanisms of 1.013 and that the clinching auction (a revelation mechanism) is a prior-independent e ≈ 2.714 approximation. Thus the revelation gap for single-item welfare maximization with public budget agents is in [1.013, e]. Some of our analyses extend to the revenue objective, position environments, and irregular distributions.
We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of … We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of $k$ different values, and her value for the good is a weakly increasing function of all the bidders' signals. The bidders are partitioned into $\ell$ expertise-groups, based on how their signal can impact the values for the good, and we prove upper and lower bounds regarding the approximability of social welfare and revenue for a variety of settings, parameterized by $k$ and $\ell$. Our lower bounds apply to all ex-post incentive compatible mechanisms and our upper bounds are all within a small constant of the lower bounds. Our main results take the appealing form of ascending clock auctions and provide strong incentives by admitting the desired outcomes as obvious ex-post equilibria.

References (2)

The buying and selling of information is taking place at a scale unprecedented in the history of commerce, thanks to the formation of online marketplaces for user data. Data providing … The buying and selling of information is taking place at a scale unprecedented in the history of commerce, thanks to the formation of online marketplaces for user data. Data providing agencies sell user information to advertisers to allow them to match ads to viewers more effectively. In this paper we study the design of optimal mechanisms for a monopolistic data provider to sell information to a buyer, in a model where both parties have (possibly correlated) private signals about a state of the world, and the buyer uses information learned from the seller, along with his own signal, to choose an action (e.g., displaying an ad) whose payoff depends on the state of the world.
We consider the problem of designing a revenue-maximizing auction for a single item, when the values of the bidders are drawn from a correlated distribution. We observe that there exists … We consider the problem of designing a revenue-maximizing auction for a single item, when the values of the bidders are drawn from a correlated distribution. We observe that there exists an algorithm that finds the optimal randomized mechanism that runs in time polynomial in the size of the support. We leverage this result to show that in the oracle model introduced by Ronen and Saberi [FOCS'02], there exists a polynomial time truthful in expectation mechanism that provides a (1.5+ε)-approximation to the revenue achievable by an optimal truthful-in-expectation mechanism, and a polynomial time deterministic truthful mechanism that guarantees 5/3 approximation to the revenue achievable by an optimal deterministic truthful mechanism.