Embedding 𝐿¹ in 𝐿¹/𝐻¹

Type: Article

Publication Date: 1983-01-01

Citations: 9

DOI: https://doi.org/10.1090/s0002-9947-1983-0701518-9

Abstract

It is proved that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is isomorphic to a subspace of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1 Baseline slash upper H Superscript 1"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1}/{H^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. More precisely, there exists a diffuse <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>Οƒ<!-- Οƒ --></mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper S"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">S</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the circle such that the corresponding expectation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper E colon upper H Superscript normal infinity Baseline right-arrow upper L Superscript normal infinity Baseline left-parenthesis bold upper C right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">E</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">β†’<!-- β†’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">C</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {E}}:{H^\infty } \to {L^\infty }({\mathbf {C}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is onto. The method consists in studying certain martingales on the product <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="product Overscript bold upper N Endscripts"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mo>∏<!-- ∏ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">N</mml:mi> </mml:mrow> </mml:mrow> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">{\prod ^{\mathbf {N}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Embedding 𝑙_{𝑝}^{𝑛^{𝛼}} in 𝑙ⁿ_{𝑝,π‘ž} 1983 N. L. Carothers
P. H. Flinn
+ PDF Chat A property of the embedding of 𝑐₀ in 𝑙_{∞} 1986 A. K. Snyder
+ PDF Chat 𝔐³ admitting a certain embedding of 𝔓² is a pseudo 𝔓³ 1970 C. D. Feustel
+ 𝑆-invariant subspaces of 𝐿^{𝑝}(𝐓) 2004 David A. Redett
+ PDF Chat When π‘ˆ(πœ…) can be mapped onto π‘ˆ(πœ”) 1980 Jan van Mill
+ PDF Chat The separable representations of π‘ˆ(𝐻) 1988 Doug Pickrell
+ β€œBeurling type” subspaces of 𝐿^{𝑝}(𝐓²) and 𝐇^{𝐩}(𝐓²) 2004 David A. Redett
+ PDF Chat On π‘Š* embedding of π΄π‘Š*-algebras 1972 Diane Laison
+ PDF Chat A rigid subspace of 𝐿₀ 1981 N. J. Kalton
James W. Roberts
+ PDF Chat Some characterizations of 𝐢(β„³) 1996 Christopher J. Bishop
+ Interpolation between 𝐿₁ and 𝐿_{𝑝},1&lt;𝑝&lt;∞ 2004 Π‘. Π’. ΠΡΡ‚Π°ΡˆΠΊΠΈΠ½
Lech MaligraΕ„da
+ PDF Chat Certain invariant subspace structure of 𝐿²(𝕋²) 1998 Kichi-Suke Saito
Guoxing Ji
Tomoyoshi Ohwada
+ PDF Chat A characterization of πΉβΊβˆ©π‘ 1976 M. Stoll
+ PDF Chat On proximinality in 𝐿₁(𝑇×𝑆) 1982 Steven M. Holland
W. A. Light
L. J. Sulley
+ An embedding theorem 2013 N. Chernyavskaya
L. A. Shuster
+ PDF Chat Embedding subspaces of 𝐿₁ into 𝑙^{𝑁}₁ 1990 Michel Talagrand
+ PDF Chat Complete intersections in 𝐢ⁿ and 𝑅²ⁿ 1980 Marie A. Vitulli
+ PDF Chat Totally real embeddings of 𝑆³ in 𝐢³ 1985 Patrick Ahern
Walter Rudin
+ The 𝑑-structure induced by an 𝑛-tilting module 2017 Silvana Bazzoni
+ PDF Chat Espaces 𝑙^{𝑝} dans les sous-espaces de 𝐿¹ 1983 Sylvie Guerre
M. LΓ©vy