On the reduced length of a polynomial with real coefficients

Type: Article

Publication Date: 2006-01-01

Citations: 11

DOI: https://doi.org/10.7169/facm/1229442629

Abstract

The length $L(P)$ of a polynomial $P$ is the sum of the absolute values of the coefficients. For $P\in\mathbb{R}[x]$ the properties of $l(P)$ are studied, where $l(P)$ is the infimum of $L(PG)$ for $G$ running through monic polynomials over $\mathbb{R}$.

Locations

  • Functiones et Approximatio Commentarii Mathematici - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the reduced length of a polynomial with real coefficients, II 2007 Andrzej Schinzel
+ PDF Chat The reduced length of a polynomial with complex coefficients 2008 Andrzej Schinzel
+ The reduced length of a polynomial with complex or real coefficients (Analytic Number Theory and Related Areas) 2009 Andrzej Schinzel
+ PDF Chat Sets of lengths of powers of a variable 2019 Richard Belshoff
Daniel Kline
Mark Rogers
+ The reduced length of a polynomial with complex or real coefficients (解析的整数論とその周辺--RIMS研究集会報告集) 2009 Andrzej Schinzel
+ Sets of Lengths of Powers of a Variable 2016 Richard Belshoff
Daniel Kline
Mark Rogers
+ Sets of Lengths of Powers of a Variable 2016 Richard Belshoff
Daniel Kline
Mark W. Rogers
+ On the reduced height of a polynomial 2007 Artūras Dubickas
Jonas Jankauskas
+ Long Division of Polynomials 2015
+ On the ratio of values of a polynomial 1984 T. N. Shorey
+ Lengths of roots of polynomials in a Hahn field 2021 J. F. Knight
K. Lange
+ Lengths of Roots of Polynomials in a Hahn Field 2021 Julia F. Knight
Karen Lange
+ On the algebraic properties of the length function 2008 О. В. Маркова
+ Polynomials with a root close to an integer 1999 Artūras Dubickas
+ PDF Chat THE ABSOLUTE LENGTH OF ALGEBRAIC INTEGERS WITH POSITIVE REAL PARTS 2014 Qiang Wu
Xiaoxia Tian
+ On common values of lacunary polynomials at integer points 2015 Dijana Kreso
+ On Goldbach's Conjecture for Integer Polynomials 2006 Filip Saidak
+ On Goldbach's Conjecture for Integer Polynomials 2006 Filip Saidak
+ PDF Chat On the length of a Hilbert ascending chain 1971 A. Seidenberg
+ The Length of Totally Positive Algebraic-Integers 1995 Valérie Flammang