Nonseparating almost continuous retracts of 𝐼ⁿ

Type: Article

Publication Date: 1984-01-01

Citations: 2

DOI: https://doi.org/10.1090/s0002-9939-1984-0735577-0

Abstract

Compact almost continuous retracts of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I Superscript n Baseline left-parenthesis n greater-than-or-slanted-equals 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>I</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>β©Ύ<!-- β©Ύ --></mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{I^n}(n \geqslant 2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> do not separate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{E^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Some other results that hold for continuous functions are also shown to hold for almost continuous functions. A result in [<bold>5</bold>] giving sufficient conditions for a set to be an almost continuous retract of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>I</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{I^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is examined further, and a method of constructing some almost continuous retracts of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>I</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{I^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Types of almost continuity 1983 B. Garrett
Kenneth R. Kellum
+ PDF Chat A continuum 𝑋 which is a retract of 𝐢(𝑋) but not of 2^{𝑋} 1987 Alejandro Illanes
+ A non-trivial copy of π›½β„•βˆ–β„• 2014 Alan Dow
+ PDF Chat Taming compacta in 𝐸⁴ 1982 John Walsh
David Wright
+ Ultradifferentiable functions on lines in ℝⁿ 1999 Tejinder S. Neelon
+ PDF Chat A note on ₂𝑠𝑐(𝐸₁) 1988 Rana Barua
+ PDF Chat When π‘ˆ(πœ…) can be mapped onto π‘ˆ(πœ”) 1980 Jan van Mill
+ PDF Chat $\mathcal{L}$-realcompactifications as epireflections 1974 H. L. Bentley
S. A. Naimpally
+ PDF Chat Concerning continuity apart from a meager set 1986 Janusz Kaniewski
Zbigniew Piotrowski
+ PDF Chat Completeness of {𝑠𝑖𝑛𝑛π‘₯+𝐾𝑖 π‘π‘œπ‘ π‘›π‘₯} 1971 Jonathan I. Ginsberg
+ PDF Chat On the sequence space 𝑙_{(𝑝_{𝑛})} and πœ†_{(𝑝_{𝑛})}, 0&lt;𝑝_{𝑛}≀1 1977 Steven Schonefeld
W. J. Stiles
+ PDF Chat A note on 4/𝑛=1/π‘₯+1/𝑦+1/𝑧 1982 Xun Qian Yang
+ PDF Chat Weak restricted and very restricted operators on 𝐿² 1984 J. Marshall Ash
+ PDF Chat The separable representations of π‘ˆ(𝐻) 1988 Doug Pickrell
+ β€œBeurling type” subspaces of 𝐿^{𝑝}(𝐓²) and 𝐇^{𝐩}(𝐓²) 2004 David A. Redett
+ PDF Chat A note on 𝐢_{𝑐}(𝑋) 1975 G. D. Richardson
D. C. Kent
+ On contractible 𝑛-dimensional compacta, non-embeddable into ℝ²ⁿ 2000 DuΕ‘an RepovΕ‘
Arkady Skopenkov
+ PDF Chat Maps in 𝑅ⁿ with finite-to-one extensions 1986 Michael Starbird
+ Weakly null sequences in 𝐿₁ 2006 William B. Johnson
B. Maurey
Gideon Schechtman
+ PDF Chat A characterization of πΉβΊβˆ©π‘ 1976 M. Stoll