Isoperimetric Inequalities and Imbedding Theorems in Irregular Domains

Type: Article

Publication Date: 1998-10-01

Citations: 99

DOI: https://doi.org/10.1112/s0024610798006346

Abstract

The paper proves several weighted imbedding theorems for domains with fractal boundaries.The weights considered are distances to the boundary to certain powers, and the domains are so-called s-John domains.The paper also proves, in the general setting, that the existence of an imbedding implies compactness of the imbedding for lower exponents.Moreover, following Maz'ya, the paper reformulates the imbedding theorems in the language of local isoperimetric and capacity estimates.holds if and only if a version of the isoperimetric inequality involving exponent q is

Locations

  • Journal of the London Mathematical Society - View
  • Deep Blue (University of Michigan) - View - PDF

Similar Works

Action Title Year Authors
+ Imbedding Theorems for Weighted Orlicz-Sobolev Spaces 1992 MirosƂav Krbec
Bohumı́r Opic
LuboĆĄ Pick
+ Isoperimetric inequalities and Sobolev inequalities 2012 Peter Li
+ The imbedding theorems for weighted Sobolev spaces 1988 ćˆ©éƒŽ 栀憅
+ PDF Chat Hardy inequalities and imbeddings in domains generalizing đ¶^{0,𝜆} domains 1994 Andreas Wannebo
+ Compactness of Orlicz-Sobolev space imbeddings for unbounded domains 1975 Ian Graham Cahill
+ Sobolev Imbedding Theorems 1995 Kazuaki Taira
+ PDF Chat Isoperimetric inequalities 2003 Katsuhiro Shiohama
Takashi Shioya
Minoru Tanaka
+ An imbedding theorem for Musielak–Sobolev spaces 2011 Xianling Fan
+ Embedding and compactness theorems for irregular and unbounded domains in weighted Sobolev spaces 1986 Saverio Salerno
Mario Troisi
+ Remark on Compactness of Imbeddings in Weighted Spaces 1987 Bohumı́r Opic
Alois Kufner
+ PDF Chat Imbeddings of anisotropic Orlicz-Sobolev spaces and applications 2002 Pankaj Jain
Dag Lukkassen
Lars‐Erik Persson
Nils Svanstedt
+ Hardy Inequalities and Imbeddings in Domains Generalizing C 0,λ Domains 1994 Andreas Wannebo
+ Compact imbeddings of weighted Sobolev spaces on unbounded domains 1971 Richard Adams
+ Imbedding theorems for general Sobolev weight spaces 1969 Alois Kufner
+ Isoperimetric Inequalities and Applications 2017 Martin T. Barlow
+ Isoperimetric Inequalities and Concentration 2009 Devdatt Dubhashi
Alessandro Panconesi
+ Approximation numbers of Sobolev imbeddings over unbounded domains 1978 Hermann König
+ Imbedding theorems for generalized Sobolev classes 𝑊^{𝑟}_{𝑝} 1970 S. V. Uspenskiĭ
+ A difference analogue of the imbedding theorem for the anisotropic Sobolev space $$\mathop {W_{p_1 , \ldots ,p_n }^1 }\limits^0 $$ 1989 I. M. Kolodii
I. I. Verba
+ PDF Chat The imbedding theorems for weighted Sobolev spaces II 1991 Toshio Horiuchi