Bias-Robust Estimates of Regression Based on Projections

Type: Article

Publication Date: 1993-06-01

Citations: 54

DOI: https://doi.org/10.1214/aos/1176349160

Abstract

A new class of bias-robust estimates of multiple regression is introduced. If $y$ and $x$ are two real random variables, let $T(y, x)$ be a univariate robust estimate of regression of $y$ on $x$ through the origin. The regression estimate $\mathbf{T}(y, \mathbf{x})$ of a random variable $y$ on a random vector $\mathbf{x} = (x_1,\cdots, x_p)'$ is defined as the vector $\mathbf{t} \in \mathfrak{R}^p$ which minimizes $\sup_{\|\mathbf{\lambda}\| = 1} \mid T(y - \mathbf{t'x, \lambda' x}) \mid s(\mathbf{\lambda'x})$, where $s$ is a robust estimate of scale. These estimates, which are called projection estimates, are regression, affine and scale equivariant. When the univariate regression estimate is $T(y, x) =$ median $(y/x)$, the resulting projection estimate is highly bias-robust. In fact, we find an upper bound for its maximum bias in a contamination neighborhood, which is approximately twice the minimum possible value of this maximum bias for any regression and affine equivariant estimate. The maximum bias of this estimate in a contamination neighborhood compares favorably with those of Rousseeuw's least median squares estimate and of the most bias-robust GM-estimate. A modification of this projection estimate, whose maximum bias for a multivariate normal with mass-point contamination is very close to the minimax bound, is also given. Projection estimates are shown to have a rate of consistency of $n^{1/2}$. A computational version of these estimates, based on subsampling, is given. A simulation study shows that its small sample properties compare very favorably to those of other robust regression estimates.

Locations

  • The Annals of Statistics - View - PDF

Similar Works

Action Title Year Authors
+ Robust Estimation in the Logistic Regression Model 1996 Ana M. Bianco
Vı́ctor J. Yohai
+ PDF Chat Robust Multivariate Regression 2004 Peter J. Rousseeuw
Stefan Van Aelst
Katrien Van Driessen
Jose A Gulló
+ On Bayesian robust regression with diverging number of predictors 2016 Daniel Nevo
Ya’acov Ritov
+ On Bayesian robust regression with diverging number of predictors 2015 Daniel Nevo
Ya’acov Ritov
+ On Bayesian robust regression with diverging number of predictors 2015 Daniel Nevo
Ya’acov Ritov
+ PDF Chat None 2002 Christophe Croux
Gentiane Haesbroeck
Peter J. Rousseeuw
+ Robust Ridge Regression for High-Dimensional Data 2011 Ricardo A. Maronna
+ Robust and efficient estimation of the residual scale in linear regression 2013 Stefan Van Aelst
Gert Willems
Ruben H. Zamar
+ PDF Chat Robust shrinkage M-estimators of large covariance matrices 2016 Nicolas Auguin
David Morales‐Jiménez
Matthew R. McKay
Romain Couillet
+ A review on robust M-estimators for regression analysis 2021 Diego Q.F. de Menezes
Diego Martinez Prata
Argimiro R. Secchi
José Carlos Pinto
+ Robust estimation for the multivariate linear model based on a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>τ</mml:mi></mml:math>-scale 2005 Marta García Ben
Elena Martínez‐Carballo
Vı́ctor J. Yohai
+ Robust Regression 1995 Calyampudi Radhakrishna Rao
Helge Toutenburg
+ Projection Estimators for Generalized Linear Models 2011 Andrea Bergesio
Vı́ctor J. Yohai
+ PDF Chat The shooting S-estimator for robust regression 2015 Viktoria Öllerer
Andreas Alfons
Christophe Croux
+ The shooting S-estimator for robust regression 2015 Viktoria Öllerer
Andreas Alfons
Christophe Croux
+ The shooting S-estimator for robust regression 2015 Viktoria Öllerer
Andreas Alfons
Christophe Croux
+ Brief on Robust Regression 2017 Jeffrey E Kottemann
+ Robust Methods for High-Dimensional Regression and Covariance Matrix Estimation 2019 Marco Avella-Medina
+ A biased-robust regression technique for the combined outlier-multicollinearity problem 1996 James R. Simpsona
Douglas C. Montgomery
+ Robust Estimates in Linear Regression - A Simulation Approach 1981 Siegfried Heiler

Works Cited by This (0)

Action Title Year Authors