Critical behavior of certain antiferromagnets with complicated ordering: Four-loop<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ɛ</mml:mi></mml:math>-expansion analysis

Type: Article

Publication Date: 2001-11-14

Citations: 16

DOI: https://doi.org/10.1103/physrevb.64.214423

Abstract

The critical behavior of a complex N-component order parameter Ginzburg-Landau model with isotropic and cubic interactions describing antiferromagnetic and structural phase transitions in certain crystals with complicated ordering is studied in the framework of the four-loop renormalization group (RG) approach in $4\ensuremath{-}\ensuremath{\varepsilon}$ dimensions. By using dimensional regularization and the minimal subtraction scheme, the perturbative expansions for RG functions are deduced and resummed by the Borel-Leroy transformation combined with a conformal mapping. Investigation of the global structure of RG flows for the physically significant cases $N=2$ and 3 shows that the model has an anisotropic stable fixed point governing the continuous phase transitions with new critical exponents. This is supported by the estimate of the critical dimensionality ${N}_{c}=1.445(20)$ obtained from six loops via the exact relation ${N}_{c}=\frac{1}{2}{n}_{c}$ established for complex and real hypercubic models.

Locations

  • Physical review. B, Condensed matter - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Critical thermodynamics of three-dimensional MN-component field model with cubic anisotropy from higher-loop RG expansions 2000 Andrey Mudrov
K. B. Varnashev
+ PDF Chat Critical behavior of three-dimensional magnets with complicated ordering from three-loop renormalization-group expansions 1999 A. I. Sokolov
K. B. Varnashev
+ PDF Chat Pseudo-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ɛ</mml:mi></mml:math>expansion of six-loop renormalization-group functions of an anisotropic cubic model 2000 R. Folk
Yurij Holovatch
T. Yavors’kii
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math>-component Ginzburg-Landau Hamiltonian with cubic anisotropy: A six-loop study 2000 J. M. Carmona
Andrea Pelissetto
Ettore Vicari
+ PDF Chat Phase transitions in anisotropic superconducting and magnetic systems with vector order parameters: Three-loop renormalization-group analysis 1994 S. A. Antonenko
A. I. Sokolov
+ PDF Chat Critical behavior of two-dimensional cubic and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>M</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:math>models in the five-loop renormalization group approximation 2004 Pasquale Calabrese
E. V. Orlov
D. V. Pakhnin
A. I. Sokolov
+ PDF Chat Three-loop renormalization-group analysis of a complex model with stable fixed point: Critical exponents up to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>ε</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>ε</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:… 1998 Andrey Mudrov
K. B. Varnashev
+ PDF Chat On critical behavior of phase transitions in certain antiferromagnets with complicated ordering 2001 Andrey Mudrov
K. B. Varnashev
+ PDF Chat Three-dimensional antiferromagnetic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mtext>CP</mml:mtext><mml:mrow><mml:mi>N</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>models 2015 Francesco Delfino
Andrea Pelissetto
Ettore Vicari
+ PDF Chat New ordered phase in geometrically frustrated generalized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi></mml:mrow></mml:math> model 2020 Matúš Lach
M. Žukovič
+ PDF Chat Marginal dimensions for multicritical phase transitions 2012 Maxym Dudka
Folk
Yurij Holovatch
Moser
+ PDF Chat Stability of a cubic fixed point in three dimensions: Critical exponents for generic<b><i>N</i></b> 2000 K. B. Varnashev
+ PDF Chat Criticality of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> model with cubic anisotropies from nonperturbative renormalization 2019 Andrzej Chlebicki
Paweł Jakubczyk
+ PDF Chat Quantum renormalization group of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>XYZ</mml:mi></mml:math>model in a transverse magnetic field 2004 A. Langari
+ PDF Chat Critical thermodynamics of three-dimensional<i>MN</i>-component field model with cubic anisotropy from higher-loop ε expansion 2001 Andrey Mudrov
K. B. Varnashev
+ PDF Chat Analysis of the 3d massive renormalization group perturbative expansions: a delicate case 2010 Delamotte
Maxym Dudka
Yurij Holovatch
Mouhanna
+ PDF Chat Criticality of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> symmetric models in the presence of discrete gauge symmetries 2018 Andrea Pelissetto
Antonio Tripodo
Ettore Vicari
+ Critical phenomena and renormalization-group flow of multi-parameter Φ^4 field theories 2007 Ettore Vicari
+ PDF Chat Thermodynamics of isotropic and anisotropic layered magnets: Renormalization-group approach and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>N</mml:mi></mml:math>expansion 1998 V. Yu. Irkhin
A. A. Katanin
+ PDF Chat FIELD THEORY RESULTS FOR THREE-DIMENSIONAL TRANSITIONS WITH COMPLEX SYMMETRIES 2003 Pasquale Calabrese
Andrea Pelissetto
Paolo Rossi
Ettore Vicari

Works Cited by This (17)

Action Title Year Authors
+ PDF Chat Three-loop renormalization-group analysis of a complex model with stable fixed point: Critical exponents up to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>ε</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>ε</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:… 1998 Andrey Mudrov
K. B. Varnashev
+ PDF Chat Exact five-loop renormalization group functions of θ4-theory with O(N)-symmetric and cubic interactions. Critical exponents up to ϵ5 1995 H. Kleinert
Verena Schulte-Frohlinde
+ PDF Chat Critical exponents from seven-loop strong-coupling<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>φ</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>theory in three dimensions 1999 H. Kleinert
+ PDF Chat Modified Borel summation of divergent series and critical-exponent estimates for an<i>N</i>-vector cubic model in three dimensions from five-loop ε expansions 1998 Andrey Mudrov
K. B. Varnashev
+ Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory 1979 R. Seznec
Jean Zinn‐Justin
+ PDF Chat Critical behavior of the three-dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>XY</mml:mi></mml:math>universality class 2001 Massimo Campostrini
Martin Hasenbusch
Andrea Pelissetto
Paolo Rossi
Ettore Vicari
+ PDF Chat Group-theoretical methods in physics 1985 V. I. Man’ko
M. A. Markov
+ PDF Chat Critical behavior of three-dimensional magnets with complicated ordering from three-loop renormalization-group expansions 1999 A. I. Sokolov
K. B. Varnashev
+ Critical behavior of compressible magnets 1974 J. Sak
+ PDF Chat The stability of a cubic fixed point in three dimensions from the renormalization group 2000 K. B. Varnashev