An asymmetric affine Pólya–Szegö principle

Type: Article

Publication Date: 2011-02-17

Citations: 134

DOI: https://doi.org/10.1007/s00208-011-0640-9

Locations

  • Mathematische Annalen - View
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ An Asymmetric Affine Pólya--Szegö Principle 2009 Christoph Haberl
Franz E. Schuster
Jie Xiao
+ Asymmetric Affine Moser-Trudinger and Morrey-Sobolev Inequalities 2009 Jie Xiao
+ Note on affine Gagliardo-Nirenberg inequalities 2009 Zhichun Zhai
+ New approach to the affine Pólya-Szegö principle and the stability version of the affine Sobolev inequality 2015 Van Hoang Nguyen
+ New approach to the affine Pólya–Szegö principle and the stability version of the affine Sobolev inequality 2016 Van Hoang Nguyen
+ New approach to the affine P\'olya-Szeg\"o principle and the stability version of the affine Sobolev inequality 2015 Van Hoang Nguyen
+ An affine Orlicz Polya-Szego principle 2017 Youjiang Lin
+ PDF Chat The Pólya-Szegö Principle and the Anisotropic Convex Lorentz-Sobolev Inequality 2014 Shuai Liu
Binwu He
+ New approach to the general affine P\'olya-Szeg\"o principle and the stability version of the affine Sobolev inequality on functions of bounded variation 2015 Van Hoang Nguyen
+ Convex symmetrization and Pólya–Szegö inequality 2003 Luca Esposito
Cristina Trombetti
+ The affine Pólya–Szegö principle: Equality cases and stability 2013 Tuo Wang
+ Addendum to Isoperimetry and Symmetrization for Logarithmic Sobolev inequalities 2009 Joaquim Martinand
Mario Milman
+ Affine Orlicz Pólya–Szegö principle for log-concave functions 2017 Youjiang Lin
+ Higher-order symmetrization inequalities and applications 2006 Joaquim Martı́n
Mario Milman
+ The Affine Convex Lorentz–Sobolev Inequalities 2023 Wan Li
Baocheng Zhu
+ PDF Chat Asymmetric affine <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math> Sobolev inequalities 2009 Christoph Haberl
Franz E. Schuster
+ A Generalized Affine Isoperimetric Inequality 2004 Wenxiong Chen
Ralph Howard
Erwin Lutwak
Deane Yang
Gaoyong Zhang
+ A generalization of the Pólya–Szegö inequality for one-dimensional functionals 2011 S. V. Bankevich
Alexander I. Nazarov
+ Another refinement of the Pólya–Szegö inequality 2010 Yu-Dong Wu
V. Lokesha
H. M. Srivastava
+ Convex rearrangement: Equality cases in the P�lya-Szeg� Inequality 2004 Adele Ferone
Roberta Volpicelli