Measurable homomorphisms of locally compact groups

Type: Article

Publication Date: 1989-01-01

Citations: 23

DOI: https://doi.org/10.1090/s0002-9939-1989-0948154-8

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be locally compact groups and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>φ<!-- φ --></mml:mi> <mml:annotation encoding="application/x-tex">\varphi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a homomorphism from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Suppose that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi Superscript negative 1 Baseline left-parenthesis upper U right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>φ<!-- φ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>U</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\varphi ^{ - 1}}\left ( U \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is measurable for every open set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U subset-of upper H"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">U \subset H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is known under some conditions, for example, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-compact, that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>φ<!-- φ --></mml:mi> <mml:annotation encoding="application/x-tex">\varphi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is continuous. Here it is shown that this result is true without any countability restrictions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The proof depends on the observation that the regular representation of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a homomorphism.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Automatic continuity of measurable group homomorphisms 1983 Jonathan Lewin
+ PDF Chat Homomorphisms on groups and induced maps on certain algebras of measures 1971 Charles F. Dunkl
Donald E. Ramirez
+ PDF Chat On 𝐶*-algebras associated with locally compact groups 1996 M. Bachir Bekka
Eberhard Kaniuth
Anthony Lau
G. Schlichting
+ PDF Chat Baire sections for group homomorphisms 1982 Siegfried Graf
G. Mägerl
+ PDF Chat Sigma-amenable locally compact groups 1971 Joe Jenkins
+ PDF Chat Group actions and direct sum decompositions of 𝐿^{𝑝} spaces 1989 Rodney Nillsen
+ PDF Chat Continuous functions on compact groups 1997 David P. Blecher
+ PDF Chat Uniformity and uniformly continuous functions for locally compact groups 1990 Paul Milnes
+ PDF Chat Adapted sets of measures and invariant functionals on 𝐿^{𝑝}(𝐺) 1991 Rodney Nillsen
+ Commutator maps, measure preservation, and 𝑇-systems 2009 Shelly Garion
Aner Shalev
+ PDF Chat Actions of finitely generated groups on compact metric spaces 2024 Ursula Hamenstädt
+ PDF Chat Characterizations of algebras arising from locally compact groups 1992 Paul L. Patterson
+ PDF Chat Weakly compact homomorphisms from group algebras 1993 B. E. Johnson
+ PDF Chat Finitely presented condensed groups 2024 D. Osin
+ Frames generated by compact group actions 2016 Joseph W. Iverson
+ PDF Chat Uniformly distributed sequences in locally compact groups. II 1974 Leonora Benzinger
+ PDF Chat Compact-like totally dense subgroups of compact groups 1992 Dikran Dikranjan
Dmitriĭ B. Shakhmatov
+ PDF Chat On sets nonmeasurable with respect to invariant measures 1993 Sławomir Solecki
+ Isometrisable group actions 2016 Itaï Ben Yaacov
Julien Melleray
+ PDF Chat Amenable subsemigroups of a locally compact group 1970 Joe Jenkins