John-type theorems for generalized arithmetic progressions and iterated sumsets

Type: Article

Publication Date: 2008-06-05

Citations: 44

DOI: https://doi.org/10.1016/j.aim.2008.05.002

Abstract

A classical theorem of Fritz John allows one to describe a convex body, up to constants, as an ellipsoid. In this article we establish similar descriptions for generalized (i.e. multidimensional) arithmetic progressions in terms of proper (i.e. collision-free) generalized arithmetic progressions, in both torsion-free and torsion settings. We also obtain a similar characterization of iterated sumsets in arbitrary abelian groups in terms of progressions, thus strengthening and extending recent results of Szemerédi and Vu.

Locations

  • Advances in Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Advances in Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Advances in Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ John-type theorems for generalized arithmetic progressions and iterated sumsets 2007 Terence Tao
Van Vu
+ Generalized arithmetical progressions and sumsets 1994 Imre Z. Ruzsa
+ PDF Chat Discrete analogues of John’s theorem 2019 Sören Lennart Berg
Martin Henk
+ Selberg's Inequality in Arithmetic Progressions 1992 César Calderón
+ THE SUMS OF GENERALIZED GEOMETRIC PROGRESSIONS 2016 V. V. Druzhinin
Anna Genadievna Sirotkina
+ Additive Combinatorics 2006 Terence Tao
Van H. Vu
+ Sums of Arithmetic Progressions 1995 Roger Cook
D. W. Sharpe
+ On a two-dimensional analogue of Szemerédi's theorem in Abelian groups 2009 Ilya D. Shkredov
+ Geometric progressions in sumsets over finite fields 2007 Omran Ahmadi
Igor E. Shparlinski
+ Arithmetic progressions in sumsets 2002 B. Green
+ Independent sets and arithmetic progressions 1971 John J. Benedetto
+ Progressions and Finite Sums 2015 Radmila Bulajich Manfrino
José Antonio Gómez Ortega
Rogelio Valdez Delgado
+ Supplement to Generalized Euler Constants for Arithmetical Progressions 1992 Karl Dilcher
+ PDF From harmonic analysis to arithmetic combinatorics 2007 Izabella Łaba
+ Geometric progressions in vector sumsets over finite fields 2020 Igor E. Shparlinski
+ Of Arithmetical Progressions 1972 Leonard Euler
+ An introduction to higher energies and sumsets 2015 Ilya D. Shkredov
+ Incidence bounds with M\"obius hyperbolae in positive characteristic 2021 Misha Rudnev
James Thomas Wheeler
+ Arithmetic progressions in subset sums 1992 P. Erdős
Andràs Sárközy
+ Arak’s Inequalities for the Generalized Arithmetic Progressions 2018 A. Yu. Zaîtsev