Nair–Tenenbaum bounds uniform with respect to the discriminant

Type: Article

Publication Date: 2012-01-12

Citations: 29

DOI: https://doi.org/10.1017/s0305004111000752

Abstract

Abstract For functions F satisfying a certain submultiplicativity condition and polynomials Q 1 , . . ., Q k in [ X ], Nair and Tenenbaum obtained an upper bound on the short sum $\sum_{x < n \leq x+y} F(|Q_{1}(n)|,\dotsc,|Q_{k}(n)|)$ with an implicit dependency on the discriminant of Q 1 . . . Q k . We obtain a similar upper bound uniform in the discriminant.

Locations

  • Mathematical Proceedings of the Cambridge Philosophical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Nair–Tenenbaum uniform with respect to the discriminant–ERRATUM 2014 Kevin Henriot
+ Sharpening of Tur´an-type inequality for polynomials 2024 N. A. Rather
Aijaz Ahmad Bhat
M. Shafi
+ PDF Chat An inequality for the discriminant of a polynomial. 1964 K. Mahler
+ Approximation Theorems and Estimates for the Discriminant 1980 Helmut Hasse
+ THE SUM OF DIGITS OF n AND n<sup>2</sup> 2011 Kevin G. Hare
Shanta Laishram
Thomas Stoll
+ An upper bound for the Laguerre polynomials 1998 Z. Lewandowski
Jan Szynal
+ PDF Chat A lower bound for a remainder term associated with the sum of digits function 1991 David M. Foster
+ A lower bound for the discriminant of polynomials related to Chebyshev polynomials 2020 Slobodan Filipovski
+ A note on a q-analogue of \lambda-Daehee polynomials 2015 Jin-Woo Park
+ Sharp upper and lower bounds for a sine polynomial 2015 Horst Alzer
Man Kam Kwong
+ PDF Chat Mean square of the error term in the asymmetric multidimensional divisor problem 2016 Xiaodon Cao
Yoshio Tanigawa
Wenguang Zhai
+ Dedekind’s discriminant theorem 2017
+ A bound for the discriminant of a polynomial 2019 Díaz Barrero
José Luís
+ A new bound for the Laguerre polynomials 2001 Małgorzata Michalska
Jan Szynal
+ On Rademacher's three-term relations for Dedekind sums 1989 Yugen Takegahara
+ PDF Chat On a Diophantine Inequality with <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>s</mi> </math> Primes 2021 Xiaofei Yan
Lu Zhang
+ PDF Chat Note on Alder’s polynomials 1960 L. Carlitz
+ Sharper bounds for the Chebyshev function 𝜃(𝑥) 2021 Samuel Broadbent
Habiba Kadiri
Allysa Lumley
Nathan Ng
Kirsten Wilk
+ Some functional lower bounds for Fejer's sine polynomial 2021 Tuo Yeong Lee
Jing Ren Soh
+ A functional bound for Young's cosine polynomial 2019 Jolie Zhi Yi Fong
T. Y. Lee
Peng‐Jie Wong