Type: Article
Publication Date: 1998-03-09
Citations: 7611
DOI: https://doi.org/10.1103/physrevlett.80.2245
The entanglement of a pure state of a pair of quantum systems is defined as the entropy of either member of the pair. The entanglement of formation of a mixed state $\ensuremath{\rho}$ is the minimum average entanglement of an ensemble of pure states that represents \ensuremath{\rho}. An earlier paper conjectured an explicit formula for the entanglement of formation of a pair of binary quantum objects (qubits) as a function of their density matrix, and proved the formula for special states. The present paper extends the proof to arbitrary states of this system and shows how to construct entanglement-minimizing decompositions.