Maximal inequalities related to generalized a.e. continuity

Type: Article

Publication Date: 1979-01-01

Citations: 13

DOI: https://doi.org/10.1090/s0002-9947-1979-0534110-9

Abstract

An integral inequality of the classical Hardy-Littlewood type is obtained for the maximal function of positive convolution operators associated with approximations of the identity in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{R^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is shown that the (formally) rearranged maximal function can in general be estimated by an elementary integral involving the decreasing rearrangements of the kernel of the approximation and the function being approximated. (The estimate always holds when the kernel has compact support or a decreasing radial majorant integrable in a neighborhood of infinity; a one-dimensional counterexample shows that integrability alone may not suffice.) The finiteness of the integral determines a Lorentz space of functions which are a.e. continuous in the generalized sense of the approximation. Conversely, in dimension one it is established that this space is the largest strongly rearrangement invariant Banach space of such functions. In particular, the new inequality provides access to the study of Cesàro continuity of order less than one.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Maximal Inequalities Related to Generalized A.E. Continuity 1979 W. B. Jurkat
J. L. Troutman
+ PDF Chat Meda inequality for rearrangements of the B-convolutions and some applications 2008 Vagif S. Guliyev
A. Serbetci
Z. V. Safarov
+ PDF Chat Convolution in Rearrangement-Invariant Spaces Defined in Terms of Oscillation and the Maximal Function 2014 Martin Křepela
+ PDF Chat Inequality of O'Neil-type for convolutions associated with the Laplace-Bessel differential operator and applications 2008 Vagif S. Guliyev
A. Serbetci
Z. V. Safarov
+ Rearrangement inequalities for functionals with monotone integrands 2006 Almut Burchard
Hichem Hajaiej
+ A sharp rearrangement inequality for the fractional maximal operator 2000 Andrea Cianchi
Ron Kerman
Bohumı́r Opic
Luboš Pick
+ Rearrangement inequality for the Hardy–Littlewood maximal operator 2022 Xudong Nie
Dunyan Yan
Shao Liu
Yangkendi Deng
+ Rearrangement inequalities for functionals with monotone integrands 2005 Almut Burchard
Hichem Hajaiej
+ PDF Chat On maximal rearrangement inequalities for the Fourier transform 1984 W. B. Jurkat
G. Sampson
+ A New Approach to Rearrangements of Maximal Operators 2005 Andrei K. Lerner
+ New estimates for the maximal functions and applications 2021 Óscar Domínguez
Sergey Tikhonov
+ PDF Chat Rearrangement Inequalities 2022
+ New estimates for the maximal functions and applications 2022 Óscar Domínguez
Sergey Tikhonov
+ New estimates for the maximal functions and applications 2021 Óscar Domínguez
Sergey Tikhonov
+ Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities 2000 Marı́a J. Carro
José A. Raposo
Javier Soria
+ Rearrangement invariance of Rademacher multiplicator spaces 2009 С. В. Асташкин
Guillermo P. Curbera
+ PDF Chat Complete monotonicity of modified Bessel functions 1990 Mourad E. H. Ismail
+ PDF Chat Rearrangement of Hardy-Littlewood maximal functions in Lorentz spaces 1999 Jesús Bastero
Mario Milman
Francisco J. Ruiz
+ Second-order derivatives and rearrangements 2000 Andrea Cianchi
+ PDF Chat Basic functional properties of certain scale of rearrangement‐invariant spaces 2023 Hana Turčinová