ON WARPED PRODUCT SPACES WITH A CERTAIN RICCI CONDITION

Type: Article

Publication Date: 2013-09-30

Citations: 15

DOI: https://doi.org/10.4134/bkms.2013.50.5.1683

Abstract

In this paper, we obtain the criteria that the Riemannian manifold B is Einstein or a gradient Ricci soliton from the information of the second derivative of <TEX>$f$</TEX> in the warped product space <TEX>$R{\times}_fB$</TEX> with gradient Ricci solitons. Moreover, we construct new examples of non-Einstein gradient Ricci soliton spaces with an Einstein or non-Einstein gradient Ricci soliton leaf using our main theorems. Finally we also get analogous criteria for the Lorentzian version.

Locations

  • Bulletin of the Korean Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat ON A CLASSIFICATION OF WARPED PRODUCT SPACES WITH GRADIENT RICCI SOLITONS 2016 Sang-Deok Lee
Byung Hak Kim
Jin Hyuk Choi
+ Warped product spaces with Ricci conditions 2017 Sang-Deok Lee
Byung Hak Kim
Jin Hyuk Choi
+ Gradient Ricci soliton warped product 2015 Francisco Eteval da Silva Feitosa
A. A. Freitas
José N. V. Gomes
+ PDF Chat On the construction of gradient Ricci soliton warped product 2017 Francisco Eteval da Silva Feitosa
Antonio Airton Freitas Filho
José N. V. Gomes
+ PDF Chat Ricci Soliton of CR-Warped Product Manifolds and Their Classifications 2023 Yanlin Li
S. K. Srivastava
Fatemah Mofarreh
Anuj Kumar
Akram Ali
+ PDF Chat Characterization of sequential warped product gradient Ricci-Bourguignon soliton 2023 Sampa Pahan
Souvik Dutta
+ PDF Chat Gradient almost Ricci solitons on multiply warped product manifolds 2021 Seçkin Günsen
Leyla Onat
+ ON THE CONSTRUCTION OF GRADIENT ALMOST RICCI SOLITON WARPED PRODUCT 2015 Francisco Eteval da Silva Feitosa
A. A. Freitas
José N. V. Gomes
R. S. Pina
+ PDF Chat Classification of Warped Product Submanifolds in Kenmotsu Space Forms Admitting Gradient Ricci Solitons 2019 Ali H. Alkhaldi
Akram Ali
+ Gradient almost Ricci soliton warped product 2015 Francisco Eteval da Silva Feitosa
Antonio Airton Freitas Filho
José N. V. Gomes
R. S. Pina
+ Gradient Einstein-Type Structures immersed into a Riemannian Warped Product 2020 E. Batista
L. Adriano
W. Tokura
+ PDF Chat Ricci almost solitons on semi‐Riemannian warped products 2022 Valter Borges
Keti Tenenblat
+ PDF Chat Gradient Ricci-Yamabe solitons on warped product manifolds 2023 Fatma Karaca
+ Gradient $ρ$-Einstein Solitons and Applications 2022 Si̇nem Güler
Bülent Ünal
+ Characterization of a special type of Ricci–Bourguignon soliton on sequential warped product manifold 2024 Sampa Pahan
Souvik Dutta
+ PDF Chat Gradient Einstein-type structures immersed into a Riemannian warped product 2022 Elismar Dias Batista
Levi Adriano
Willian Isáo Tokura
+ Classification of base of warped product almost Ricci solitons 2017 José N. V. Gomes
Manoel V. M. Neto
+ Classification of base of warped product almost Ricci solitons 2017 José N. V. Gomes
Manoel V. M. Neto
+ On gradient Ricci soliton space-time warped product with potentially infinite metric 2023 Buddhadev Pal
R. S. Chaudhary
+ Gradient Ricci almost soliton warped product 2019 Francisco Eteval da Silva Feitosa
Antonio Airton Freitas Filho
José N. V. Gomes
R. S. Pina