A class of Riesz sets

Type: Article

Publication Date: 1993-01-01

Citations: 7

DOI: https://doi.org/10.1090/s0002-9939-1993-1176071-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a metrizable compact abelian group. A subset <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the dual group is said to be ergodic if every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f element-of upper L Superscript normal infinity Baseline left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f \in {L^\infty }(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose spectrum lies in a translate of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a unique invariant mean. It is shown that such a set is a Riesz set.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Ensembles de Riesz 1988 Valérie Tardivel
+ PDF Chat Copies of 𝑐₀ and ℓ_{∞} in topological Riesz spaces 1998 Lech Drewnowski
Iwo Labuda
+ PDF Chat Most Riesz product measures are 𝐿^{𝑝}-improving 1986 David L. Ritter
+ PDF Chat A class of Riesz-Fischer sequences 1995 Russell M. Reid
+ PDF Chat The strong conclusion of the F. and M. Riesz theorem on groups 1984 Irving Glicksberg
+ PDF Chat On the product of a Riesz set and a small 𝑝 set 1981 Hiroshi Yamaguchi
+ PDF Chat Ergodic sequences in the Fourier-Stieltjes algebra and measure algebra of a locally compact group 1999 Anthony Lau
Viktor Losert
+ PDF Chat Strong completeness of a class of 𝐿²(𝑇)-type Riesz spaces 2024 Anke Kalauch
Wen-Chi Kuo
Bruce W. Watson
+ PDF Chat Ergodic properties that lift to compact group extensions 1988 E. Arthur Robinson
+ PDF Chat A Class of Riesz Sets 1993 Daniel Li
+ Riesz bases of exponentials and the Bohr topology 2020 Carlos Cabrelli
Kathryn E. Hare
Ursula Molter
+ PDF Chat Riesz seminorms with Fatou properties 1974 Charalambos D. Aliprantis
+ PDF Chat The boundedness of Riesz 𝑠-transforms of measures in ℝⁿ 1996 Merja Vihtilä
+ PDF Chat Group theoretic remarks on Riesz systems on balls 1982 Adam Korányi
Stephen Vági
+ A Banach-Stone theorem for Riesz isomorphisms of Banach lattices 2008 Jin Chen
Zi Chen
Ngai‐Ching Wong
+ PDF Chat Ergodic undefinability in set theory and recursion theory 1981 Daniele Mundici
+ PDF Chat Sums of lattice homomorphisms 1992 S. J. Bernau
C. B. Huijsmans
B. de Pagter
+ On the Riesz dual of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e20" altimg="si12.svg"><mml:mrow><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>μ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> 2020 Arjan van Rooij
+ PDF Chat Riesz groups with a finite number of disjoint elements 1978 Jiří Rachůnek
+ THE F. AND M. RIESZ THEOREM ON GROUPS 2001 Shōzō Koshi