Type: Article
Publication Date: 1993-01-01
Citations: 7
DOI: https://doi.org/10.1090/s0002-9939-1993-1176071-0
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a metrizable compact abelian group. A subset <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the dual group is said to be ergodic if every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f element-of upper L Superscript normal infinity Baseline left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f \in {L^\infty }(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose spectrum lies in a translate of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a unique invariant mean. It is shown that such a set is a Riesz set.