Inversion Formulas for the Spherical Radon-Dunkl Transform

Type: Article

Publication Date: 2009-03-03

Citations: 3

DOI: https://doi.org/10.3842/sigma.2009.025

Abstract

The spherical Radon-Dunkl transform R κ , associated to weight functions invariant under a finite reflection group, is introduced, and some elementary properties are obtained in terms of h-harmonics.Several inversion formulas of R κ are given with the aid of spherical Riesz-Dunkl potentials, the Dunkl operators, and some appropriate wavelet transforms.

Locations

  • Symmetry Integrability and Geometry Methods and Applications - View - PDF
  • The scientific electronic library of periodicals of the National Academy of Sciences of Ukraine (National Academy of Sciences of Ukraine) - View - PDF

Similar Works

Action Title Year Authors
+ Inversion Formulas for the Spherical Radon-Dunkl Transform 2009 Zhongkai Li
Futao Song
+ PDF Chat Riesz transform and Riesz potentials for Dunkl transform 2006 Sundaram Thangavelu
Yuan Xu
+ Riesz transform and Riesz potentials for Dunkl transform 2004 Sundaram Thangavelu
Yuan Xu
+ PDF Chat Riesz transforms for the Dunkl harmonic oscillator 2008 Adam Nowak
Krzysztof Stempak
+ PDF Chat Inversion of Riesz Potentials for Dunkl Transform 2018 Moyi Liu
Futao Song
Rongxin Wang
+ PDF Chat Reproducing inversion formulas for the Dunkl-Wigner transforms 2015 Fethi Soltani
+ PDF Chat Inversion of the Dual Dunkl-Sonine Transform on R Using Dunkl Wavelets 2009 Mohamed Ali Mourou
+ Convolution operator and maximal function for Dunkl transform 2004 Sundaram Thangavelu
Yuan Xu
+ A transference theorem for the Dunkl transform and its applications 2010 Chang‐Feng Dai
Heping Wang
+ PDF Chat Triebel-Lizorkin spaces in Dunkl setting 2024 Chuhan Sun
Zhiming Wang
+ Inversion of Bessel Potentials with the Aid of Weighted Wavelet Transforms 2002 Ilham A. Aliev
Melih Eryiğit
+ PDF Chat Dunkl wavelets and applications to inversion of the Dunkl intertwining operator and its dual 2004 Abdellatif Jouini
+ The dual of the Hardy space associated with the Dunkl operators 2022 Jiaxi Jiu
Zhongkai Li
+ Dunkl Operators Associated with Reflection Groups 2014 Chang‐Feng Dai
Yuan Xu
+ Introduction: Spherical Harmonics and Fourier Transform 2014 Chang‐Feng Dai
Yuan Xu
+ Multiplier Theorems for the Dunkl Transform 2014 Chang‐Feng Dai
Yuan Xu
+ PDF Chat Unitarization and Inversion Formulae for the Radon Transform Between Dual Pairs 2019 Giovanni S. Alberti
Francesca Bartolucci
Filippo De Mari
Ernesto De Vito
+ Riesz transforms characterizations of Hardy spaces $H^1$ for the rational Dunkl setting and multidimensional Bessel operators 2015 Jacek Dziubański
+ PDF Chat Bessel and Flett Potentials associated with Dunkl Operators on $\Bbb R^d$ 2008 Néjib Ben Salem
Anis El Garna
Samir Kallel
+ Analysis on h-Harmonics and Dunkl Transforms 2015 Chang‐Feng Dai
Yuan Xu